A quantitative assessment of torque-transducer models for magnetoreception

Although ferrimagnetic material appears suitable as a basis of magnetic field perception in animals, it is not known by which mechanism magnetic particles may transduce the magnetic field into a nerve signal. Provided that magnetic particles have remanence or anisotropic magnetic susceptibility, an external magnetic field will exert a torque and may physically twist them. Several models of such biological magnetic-torque transducers on the basis of magnetite have been proposed in the literature. We analyse from first principles the conditions under which they are viable. Models based on biogenic single-domain magnetite prove both effective and efficient, irrespective of whether the magnetic structure is coupled to mechanosensitive ion channels or to an indirect transduction pathway that exploits the strayfield produced by the magnetic structure at different field orientations. On the other hand, torque-detector models that are based on magnetic multi-domain particles in the vestibular organs turn out to be ineffective. Also, we provide a generic classification scheme of torque transducers in terms of axial or polar output, within which we discuss the results from behavioural experiments conducted under altered field conditions or with pulsed fields. We find that the common assertion that a magnetoreceptor based on single-domain magnetite could not form the basis for an inclination compass does not always hold.

[1]  Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field , 2006, Bioelectromagnetics.

[2]  Michael Winklhofer,et al.  Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons , 2000, Biometals.

[3]  J. Kirschvink,et al.  The magnetic sense and its use in long-distance navigation by animals , 2002, Current Opinion in Neurobiology.

[4]  K. Fabian,et al.  Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm , 1996 .

[5]  M. Winklhofer,et al.  Theoretical analysis of flux amplification by soft magnetic material in a putative biological magnetic-field receptor. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  H. Lowenstam,et al.  Magnetite in Denticle Capping in Recent Chitons (Polyplacophora) , 1962 .

[7]  J. L. Gould,et al.  Bees Have Magnetic Remanence , 1978, Science.

[8]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[9]  P. Schlegel Magnetic and other non-visual orientation mechanisms in some cave and surface urodeles , 2008, Journal of Ethology.

[10]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[11]  W. Wiltschko,et al.  Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons , 2003, The Journal of comparative neurology.

[12]  M. Walker,et al.  A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. , 2008, Journal of theoretical biology.

[13]  Alfonso F Davila,et al.  Magnetic pulse affects a putative magnetoreceptor mechanism. , 2005, Biophysical journal.

[14]  D. O'leary,et al.  Relationship of the vestibular hair cells to magnetic particles in the otolith of the guitarfish sacculus , 1984, The Journal of comparative neurology.

[15]  K. Fabian,et al.  Three-dimensional micromagnetic calculations for naturally shaped magnetite: Octahedra and magnetosomes , 2005 .

[16]  W. Wiltschko,et al.  A magnetic pulse leads to a temporary deflection in the orientation of migratory birds , 1994, Experientia.

[17]  D. Edmonds,et al.  A sensitive optically detected magnetic compass for animals , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  R. Kopp,et al.  The identification and biogeochemical interpretation of fossil magnetotactic bacteria , 2008 .

[19]  S. Weinkauf,et al.  Ant antennae: are they sites for magnetoreception? , 2010, Journal of The Royal Society Interface.

[20]  R. Blakemore,et al.  Navigational Compass in Magnetic Bacteria , 1980 .

[21]  A. J. Hudspeth,et al.  Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the Bullfrog's saccular hair cell , 1988, Neuron.

[22]  Y. Harada,et al.  Magnetic materials in otoliths of bird and fish lagena and their function. , 2001, Acta oto-laryngologica.

[23]  K. Lohmann,et al.  Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields , 2005, Journal of Comparative Physiology A.

[24]  E D Yorke,et al.  A possible magnetic transducer in birds. , 1979, Journal of theoretical biology.

[25]  A. Davila,et al.  A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite , 2003 .

[26]  D. Corey,et al.  Models for ion channel gating with compliant states. , 1994, Biophysical journal.

[27]  K. Lohmann,et al.  GEOMAGNETIC ORIENTATION OF LOGGERHEAD SEA TURTLES: EVIDENCE FOR AN INCLINATION COMPASS , 1993 .

[28]  M. Winklhofer,et al.  Elastic stability of chains of magnetosomes in magnetotactic bacteria , 1997, European Biophysics Journal.

[29]  Joseph L. Kirschvink,et al.  Bats Use Magnetite to Detect the Earth's Magnetic Field , 2008, PloS one.

[30]  L. Landau,et al.  Lehrbuch der theoretischen Physik , 2007 .

[31]  J. Phillips,et al.  Two magnetoreception pathways in a migratory salamander , 1986, Science.

[32]  J. Kirschvink,et al.  Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. , 1988, The Journal of experimental biology.

[33]  W. Greiner,et al.  Iron-mineral-based magnetoreceptor in birds: polarity or inclination compass? , 2009 .

[34]  J. Kirschvink,et al.  Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. , 1988, The Journal of experimental biology.

[35]  D. Edmonds A magnetite null detector as the migrating bird’s compass , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[37]  M. Hanson,et al.  The Role of Magnetic Statoconia in Dogfish (Squalus Acanthias) , 1990 .

[38]  J. Kirschvink,et al.  Chains of single-domain magnetite particles in chinook salmon,Oncorhynchus tshawytscha , 1985, Journal of Comparative Physiology A.

[39]  Lohmann,et al.  Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems , 1995, The Journal of experimental biology.

[40]  A. Newell,et al.  Single‐domain critical sizes for coercivity and remanence , 1999 .

[41]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[42]  Robert C. Beason,et al.  PIGEON HOMING: EFFECTS OF MAGNETIC PULSES ON INITIAL ORIENTATION , 1997 .

[43]  J. Kirschvink,et al.  Comment on "Constraints on biological effects of weak extremely-low-frequency electromagnetic fields" , 1992, Physical review. A, Atomic, molecular, and optical physics.

[44]  W. Wiltschko,et al.  Effect of Wavelength of Light and Pulse Magnetisation on Different Magnetoreception Systems in a Migratory Bird , 1997 .

[45]  Wolfgang Wiltschko,et al.  Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak , 2009, Proceedings of the Royal Society B: Biological Sciences.

[46]  Stuart Parsons,et al.  Bats respond to polarity of a magnetic field , 2007, Proceedings of the Royal Society B: Biological Sciences.

[47]  Roger Proksch,et al.  Magnetite defines a vertebrate magnetoreceptor , 2000, Nature.

[48]  F. Sachs,et al.  Thermodynamics of mechanosensitivity , 2004, Physical biology.

[49]  Henrik Mouritsen,et al.  Visual but not trigeminal mediation of magnetic compass information in a migratory bird , 2009, Nature.

[50]  W. Greiner,et al.  Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. , 2007, Biophysical journal.

[51]  A. Boulbitch DEFLECTION OF A CELL MEMBRANE UNDER APPLICATION OF A LOCAL FORCE , 1998 .

[52]  J. Kirschvink Rock magnetism linked to human brain magnetite , 1994 .

[53]  M. Winklhofer,et al.  The Physics of Geomagnetic-Field Transduction in Animals , 2009, IEEE Transactions on Magnetics.

[54]  Michael Winklhofer,et al.  Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds , 2007, Journal of Comparative Physiology A.

[55]  W. Wiltschko,et al.  A Magnetic Polarity Compass for Direction Finding in a Subterranean Mammal , 1997, Naturwissenschaften.

[56]  A. Muxworthy,et al.  Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes , 2006 .

[57]  R. Kopp,et al.  Experimental Observation of Magnetosome Chain Collapse in Magnetotactic Bacteria: Sedimentological, paleomagnetic, and evolutionary implications , 2006 .

[58]  J. Kirschvink,et al.  A Candidate Magnetic Sense Organ in the Yellowfin Tuna, Thunnus albacares , 1984, Science.

[59]  Joseph L. Kirschvink,et al.  Mineralization and magnetization of chiton teeth : Paleomagnetic, sedimentologic, and biologic implications of organic magnetite , 1979 .

[60]  Michael Winklhofer,et al.  Clusters of superparamagnetic magnetite particles in the upper-beak skin of homing pigeons evidence of a magnetoreceptor? , 2001 .

[61]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[62]  E. L. Brannon,et al.  Magnetic field detection in sockeye salmon , 1981 .

[63]  M. Winklhofer,et al.  The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals , 1999, European Biophysics Journal.

[64]  Wolfgang Wiltschko,et al.  Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. , 2002, The Journal of experimental biology.

[65]  W. Wiltschko,et al.  Magnetic Compass of European Robins , 1972, Science.

[66]  Joseph L. Kirschvink,et al.  Biophysics of magnetic orientation: strengthening the interface between theory and experimental design , 2010, Journal of The Royal Society Interface.

[67]  Klaus Schulten,et al.  A Biomagnetic Sensory Mechanism Based on Magnetic Field Modulated Coherent Electron Spin Motion , 1978 .

[68]  Slava S. Epstein,et al.  Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond , 2000 .

[69]  Wolfgang Wiltschko,et al.  Orientation of Birds in Total Darkness , 2008, Current Biology.

[70]  R. Wiltschko,et al.  Evidence for a Magnetite-Based Navigational “Map” in Birds , 1997, Naturwissenschaften.

[71]  M. Winklhofer,et al.  Pulsed-field-remanence measurements on individual magnetotactic bacteria , 2002 .

[72]  R. Fettiplace,et al.  The mechanical properties of ciliary bundles of turtle cochlear hair cells. , 1985, The Journal of physiology.

[73]  B. Kachar,et al.  High-resolution structure of hair-cell tip links. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Joseph L. Kirschvink,et al.  Is Geomagnetic Sensitivity Real? Replication of the Walker-Bitterman Magnetic Conditioning Experiment in Honey Bees , 1991 .

[75]  M. McElhinny,et al.  An Investigation of the Origin of Stable Remanence in Magnetite-bearing Igneous Rocks , 1969 .

[76]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[77]  A. J. Newell,et al.  Transition to superparamagnetism in chains of magnetosome crystals , 2009 .

[78]  J. L. Gould,et al.  Pigeons have magnets. , 1979, Science.

[79]  Adair,et al.  Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[80]  J. Ashmore,et al.  Stiffness of sensory hair bundles in the sacculus of the frog , 1986, Hearing Research.

[81]  J. L. Gould,et al.  Homing of magnetized and demagnetized pigeons. , 1988, The Journal of experimental biology.

[82]  J. L. Gould,et al.  Biogenic magnetite as a basis for magnetic field detection in animals. , 1981, Bio Systems.

[83]  Michael Winklhofer,et al.  Magnetic blocking temperatures of magnetite calculated with a three‐dimensional micromagnetic model , 1997 .

[84]  R. Astumian,et al.  Biological sensing of small field differences by magnetically sensitive chemical reactions , 2000, Nature.