This paper studies the problem of AllltooAll Communication for optical networks. In such networks the vast bandwidth available is utilized through wavelength division multiplexing (WDM) : a single physical optical link can carry several logical signals, provided that they are transmitted on diierent wavelengths. In this paper we consider allloptical (or singleehop) networks, where the information, once transmitted as light, reaches its destination without being converted to electronic form in between, thus reaching high data transmission rates. In this model, we give optimal allltooall protocols, using minimum numbers of wavelengths, for particular networks of practical interest, namely the d-dimensional square tori with even side, the corresponding meshes and the Cartesian sums of complete graphs. Routage tout-optique pour l''change complet dans des rrseaux WDM RRsumm : Ce rapport tudie le probllme rraliser simultannment toutes les communications possibles dans certaines classes de rrseaux optiques. Dans ces rrseaux, la forte bande passante disponible est utilisse par la technique du multiplexage en longueur d'onde (en anglais, Wavelength Division Multiplexing : WDM) : un seul lien physique en bre optique peut transporter plusieurs signaux logiques, du moment qu'ils sont transmis des longueurs d'onde diiirentes. Sont considdrrs ici des rrseaux tout-optiques, oo l'information, une fois convertie en lumiire, atteint sa destination sans reconversion lectronique intermmdiaire. Cela permet des taux de transmission de donnnes plus levs. Pour ce moddle de rrseaux optiques, nous donnons des protocoles de communication pour rraliser toutes les connexions possibles en mmme temps. Les topologies tudiies sont celles des tores et des grilles multi-dimensionnelles carrres, et des produits carttsiens de graphes complets. La plupart des rrsultats fournis sont optimaux quant au nombre de longueurs d'onde utilisses.
[1]
N. Raghavan.
Eecient Routing in All-optical Networks
,
1994
.
[2]
Stéphane Pérennes,et al.
Colouring Paths in Directed Symmetric Trees with Applications to WDM Routing
,
1997,
ICALP.
[3]
Klaus Jansen,et al.
Call scheduling in trees, rings and meshes
,
1997,
Proceedings of the Thirtieth Hawaii International Conference on System Sciences.
[4]
Zsolt Tuza,et al.
The Forwarding Index of Directed Networks
,
1996,
Discret. Appl. Math..
[5]
Patrick Solé,et al.
Expanding and Forwarding
,
1995,
Discret. Appl. Math..
[6]
Marie-Claude Heydemann,et al.
On forwarding indices of networks
,
1989,
Discret. Appl. Math..
[7]
Stéphane Pérennes,et al.
Efficient collective communication in optical networks
,
1996,
Theor. Comput. Sci..
[8]
Daniel Minoli.
Telecommunications Technology Handbook
,
1991
.
[9]
Heiko Schröder,et al.
Optical All-to-All Communication for Some Product Graphs
,
1997,
SOFSEM.
[10]
Alok Aggarwal,et al.
Efficient routing and scheduling algorithms for optical networks
,
1994,
SODA '94.
[11]
Andrzej Pelc.
Fault-tolerant broadcasting and gossiping in communication networks
,
1996,
Networks.
[12]
Yuval Rabani,et al.
Improved bounds for all optical routing
,
1995,
SODA '95.
[13]
Klaus Jansen,et al.
Scheduling of Virtual Connections in Fast Networks
,
1996,
Universität Trier, Mathematik/Informatik, Forschungsbericht.
[14]
A. Bonato,et al.
Graphs and Hypergraphs
,
2022
.
[15]
Rajesh K. Pankaj.
Architectures for linear lightwave networks
,
1992
.