Statistical relational learning through structural analogy and probabilistic generalization

My primary research motivation is the development of a truly generic Machine Learning engine. Towards this, I am exploring the interplay between feature-based representations of data, for which there are powerful statistical machine learning algorithms, and structured representations, which are useful for reasoning and are capable of representing a broader spectrum of information. This places my work in the emergent field of Statistical Relational Learning. I combine the two approaches to representation by using analogy to translate back and forth from a relational space to a reduced feature space. Analogy allows us to narrow the search space by singling out structural likenesses in the data (which become the features) rather than relations, and also gives us a similarity metric for doing unsupervised learning. In the process, we gain several insights about the nature of analogy, and the relationship between similarity and probability.

[1]  Kenneth D. Forbus,et al.  Dynamic Case Creation and Expansion for Analogical Reasoning , 2000, AAAI/IAAI.

[2]  Kenneth D. Forbus,et al.  A Structure Mapping Model for Solving Geometric Analogy Problems , 2005 .

[3]  John E. Hummel,et al.  Distributed representations of structure: A theory of analogical access and mapping. , 1997 .

[4]  Kenneth D. Forbus,et al.  SEQL: Category learning as progressive abstraction using structure mapping , 2000 .

[5]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[6]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[7]  Ben Taskar,et al.  Probabilistic Classification and Clustering in Relational Data , 2001, IJCAI.

[8]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[9]  Philip S. Yu,et al.  Co-clustering by block value decomposition , 2005, KDD '05.

[10]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[11]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[12]  H. Pain,et al.  Can a real distinction be made between cognitive theories of analogy and categorisation , 1996 .

[13]  Kenneth D. Forbus,et al.  Transforming between Propositions and Features: Bridging the Gap , 2005, AAAI.

[14]  Olivier Bodenreider,et al.  Aggregating UMLS Semantic Types for Reducing Conceptual Complexity , 2001, MedInfo.

[15]  Philip S. Yu,et al.  A probabilistic framework for relational clustering , 2007, KDD '07.

[16]  Luc De Raedt,et al.  Attribute-Value Learning Versus Inductive Logic Programming: The Missing Links (Extended Abstract) , 1998, ILP.

[17]  Dedre Gentner,et al.  Why we’re so smart , 2003 .

[18]  Philip S. Yu,et al.  LinkClus: efficient clustering via heterogeneous semantic links , 2006, VLDB.

[19]  Kenneth D. Forbus,et al.  Simulating Similarity-Based Retrieval: A Comparison of ARCS and MAC/FAC , 2019, Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

[20]  Raymond J. Mooney,et al.  Adaptive duplicate detection using learnable string similarity measures , 2003, KDD '03.

[21]  Praveen K. Paritosh Symbolizing Quantity , 2004 .

[22]  Kenneth D. Forbus,et al.  Some Effects of a Reduced Relational Vocabulary on the Whodunit Problem , 2007, IJCAI.

[23]  J. R. Quinlan Learning Logical Definitions from Relations , 1990 .

[24]  Pedro M. Domingos,et al.  Entity Resolution with Markov Logic , 2006, Sixth International Conference on Data Mining (ICDM'06).

[25]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[26]  Luc De Raedt,et al.  Using Logical Decision Trees for Clustering , 1997, ILP.

[27]  Aynur A. Dayanik,et al.  Clustering in Relational Biological Data , 2004 .

[28]  John R. Anderson,et al.  The effects of information order and learning mode on schema abstraction , 1984, Memory & cognition.

[29]  Wei-Ying Ma,et al.  A unified framework for clustering heterogeneous Web objects , 2002, Proceedings of the Third International Conference on Web Information Systems Engineering, 2002. WISE 2002..

[30]  Michael J. Pazzani,et al.  Detecting and correcting errors in rule-based expert systems: an integration of empirical and explanation-based learning , 1991 .

[31]  Chris H. Q. Ding,et al.  Bipartite graph partitioning and data clustering , 2001, CIKM '01.

[32]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[33]  Dan Moldovan,et al.  Using Knowledge Extraction and Maintenance Techniques To Enhance Analytical Performance , 2005 .

[34]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[35]  Melanie Mitchell,et al.  Analogy-making as perception - a computer model , 1993, Neural network modeling and connectionism.

[36]  Alexa T. McCray,et al.  An Upper-Level Ontology for the Biomedical Domain , 2003, Comparative and functional genomics.

[37]  Daniel N. Osherson,et al.  Probability from similarity , 2003 .

[38]  Judea Pearl,et al.  Evidential Reasoning Using Stochastic Simulation of Causal Models , 1987, Artif. Intell..

[39]  Avi Pfeffer,et al.  Learning Probabilities for Noisy First-Order Rules , 1997, IJCAI.

[40]  M. M. Meyer,et al.  Statistical Analysis of Multiple Sociometric Relations. , 1985 .

[41]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[42]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[43]  K. Kersting,et al.  Interpreting Bayesian Logic Programs , 2000 .

[44]  Ben Taskar,et al.  Learning Probabilistic Models of Link Structure , 2003, J. Mach. Learn. Res..

[45]  David A. Cohn,et al.  The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity , 2000, NIPS.

[46]  R. Mooney,et al.  Explanation-Based Learning: An Alternative View , 1986, Machine Learning.

[47]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[48]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[49]  Kenneth D. Forbus,et al.  Efficient Learning of Qualitative Descriptions for Sketch Recognition , 2006 .

[50]  Andrew W. Moore,et al.  Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets , 1998, J. Artif. Intell. Res..

[51]  Saso Dzeroski,et al.  Learning Nonrecursive Definitions of Relations with LINUS , 1991, EWSL.

[52]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[53]  C. Lee Giles,et al.  CiteSeer: an automatic citation indexing system , 1998, DL '98.

[54]  Lise Getoor,et al.  Relational clustering for multi-type entity resolution , 2005, MRDM '05.

[55]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[56]  Bernard Gibaud,et al.  Web Ontology Language Requirements w.r.t Expressiveness of Taxonomy and Axioms in Medicine , 2003, SEMWEB.

[57]  Kenneth D. Forbus,et al.  Exploring analogy in the large , 2000 .

[58]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[59]  D L Medin,et al.  Presentation order and recognition of categorically related examples , 1994, Psychonomic bulletin & review.

[60]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[61]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[62]  Kenneth D. Forbus,et al.  Modeling Infant Learning via Symbolic Structural Alignment , 2000 .

[63]  Brian Falkenhainer,et al.  The Structure-Mapping Engine * , 2003 .

[64]  Andrew W. Moore,et al.  ADtrees for Fast Counting and for Fast Learning of Association Rules , 1998, KDD.

[65]  Chris Eliasmith,et al.  Integrating structure and meaning: a distributed model of analogical mapping , 2001, Cogn. Sci..

[66]  Nir Friedman,et al.  On the Sample Complexity of Learning Bayesian Networks , 1996, UAI.

[67]  Kenneth D. Forbus,et al.  Automatic Categorization of Spatial Prepositions , 2006 .

[68]  Mathias Kirsten,et al.  Relational Distance-Based Clustering , 1998, ILP.

[69]  Martine D. F. Schlag,et al.  Spectral K-way ratio-cut partitioning and clustering , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[70]  Stefan Wrobel,et al.  Term Comparisons in First-Order Similarity Measures , 1998, ILP.

[71]  Dedre Gentner,et al.  ABSTRACTION PROCESSES DURING CONCEPT LEARNING: A STRUCTURAL VIEW , 2006 .

[72]  Philip S. Yu,et al.  Unsupervised learning on k-partite graphs , 2006, KDD '06.

[73]  Kenneth D. Forbus,et al.  Making SME greedy and pragmatic , 2006 .

[74]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[75]  Michael P. Wellman Some Varieties of Qualitative Probability , 1994, IPMU.

[76]  J. Tenenbaum,et al.  Generalization, similarity, and Bayesian inference. , 2001, The Behavioral and brain sciences.

[77]  W D Wattenmaker Incidental concept learning, feature frequency, and correlated properties. , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[78]  Yiming Yang,et al.  Stochastic link and group detection , 2002, AAAI/IAAI.

[79]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[80]  Hendrik Blockeel,et al.  Using neural networks for relational learning , 2003, ICML 2003.