Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model

This paper examines the multiple atlas random diffeomorphic orbit model in Computational Anatomy (CA) for parameter estimation and segmentation of subcortical and ventricular neuroanatomy in magnetic resonance imagery. We assume that there exist multiple magnetic resonance image (MRI) atlases, each atlas containing a collection of locally-defined charts in the brain generated via manual delineation of the structures of interest. We focus on maximum a posteriori estimation of high dimensional segmentations of MR within the class of generative models representing the observed MRI as a conditionally Gaussian random field, conditioned on the atlas charts and the diffeomorphic change of coordinates of each chart that generates it. The charts and their diffeomorphic correspondences are unknown and viewed as latent or hidden variables. We demonstrate that the expectation-maximization (EM) algorithm arises naturally, yielding the likelihood-fusion equation which the a posteriori estimator of the segmentation labels maximizes. The likelihoods being fused are modeled as conditionally Gaussian random fields with mean fields a function of each atlas chart under its diffeomorphic change of coordinates onto the target. The conditional-mean in the EM algorithm specifies the convex weights with which the chart-specific likelihoods are fused. The multiple atlases with the associated convex weights imply that the posterior distribution is a multi-modal representation of the measured MRI. Segmentation results for subcortical and ventricular structures of subjects, within populations of demented subjects, are demonstrated, including the use of multiple atlases across multiple diseased groups.

[1]  James S. Duncan,et al.  3D image segmentation of deformable objects with joint shape-intensity prior models using level sets , 2004, Medical Image Anal..

[2]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[3]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[4]  Arthur W Toga,et al.  The LONI Pipeline Processing Environment , 2003, NeuroImage.

[5]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[6]  Hangyi Jiang,et al.  DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking , 2006, Comput. Methods Programs Biomed..

[7]  Martin Styner,et al.  A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes , 2009, NeuroImage.

[8]  Suyash P. Awate,et al.  A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction. , 2007, IEEE transactions on medical imaging.

[9]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[10]  Carlos Ortiz-de-Solorzano,et al.  Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data , 2009, IEEE Transactions on Medical Imaging.

[11]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[12]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[13]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[14]  Arthur W. Toga,et al.  Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter , 2008, NeuroImage.

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[17]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[20]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[21]  Anil K. Jain,et al.  MRF model-based algorithms for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[22]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[23]  Dinggang Shen,et al.  An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures , 2001, IEEE Transactions on Medical Imaging.

[24]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[26]  Carey E. Priebe,et al.  Segmenting magnetic resonance images via hierarchical mixture modelling , 2006, Comput. Stat. Data Anal..

[27]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[28]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[29]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[30]  S. Joshi,et al.  Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. , 2000, Radiology.

[31]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[32]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[33]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[34]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[35]  Paul M. Thompson,et al.  Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment , 2005, NeuroImage.

[36]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[37]  Jun Ma,et al.  A Bayesian Generative Model for Surface Template Estimation , 2010, Int. J. Biomed. Imaging.

[38]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[39]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[40]  Nick C. Fox,et al.  Automated Hippocampal Segmentation by Regional Fluid Registration of Serial MRI: Validation and Application in Alzheimer's Disease , 2001, NeuroImage.

[41]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[42]  Jan M. Van Campenhout,et al.  Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.

[43]  L. Lagae,et al.  Construction of a stereotaxic DTI atlas with full diffusion tensor information for studying white matter maturation from childhood to adolescence using tractography‐based segmentations , 2009, Human brain mapping.

[44]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.

[45]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[46]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[47]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[48]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[49]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[50]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[51]  Koenraad Van Leemput,et al.  A unifying framework for partial volume segmentation of brain MR images , 2003, IEEE Transactions on Medical Imaging.

[52]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[53]  R. Kikinis,et al.  Nonlinear Registration and Template-Driven Segmentation , 1999 .

[54]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[55]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[56]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[57]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[58]  Josef Kittler,et al.  Sum Versus Vote Fusion in Multiple Classifier Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[60]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[61]  Christian Barillot,et al.  Robust 3D Segmentation of Anatomical Structures with Level Sets , 2000, MICCAI.

[62]  Daniel Rueckert,et al.  Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study , 2007, NeuroImage.

[63]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[65]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[66]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[67]  Norbert Schuff,et al.  Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease , 2010, NeuroImage.

[68]  N. Paragios A level set approach for shape-driven segmentation and tracking of the left ventricle , 2003, IEEE Transactions on Medical Imaging.

[69]  Pierre Hellier,et al.  Segmentation of brain 3D MR images using level sets and dense registration , 2001, Medical Image Anal..

[70]  Max A. Viergever,et al.  Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) , 2010, IEEE Transactions on Medical Imaging.

[71]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[72]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[73]  Paul M. Thompson,et al.  Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models , 2008, IEEE Transactions on Medical Imaging.

[74]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[75]  Milan Sonka,et al.  Segmentation and interpretation of MR brain images. An improved active shape model , 1998, IEEE Transactions on Medical Imaging.

[76]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[77]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[78]  Michael I. Miller,et al.  Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging , 2009, NeuroImage.

[79]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[80]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[81]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[82]  Mert R. Sabuncu,et al.  A Generative Model for Image Segmentation Based on Label Fusion , 2010, IEEE Transactions on Medical Imaging.

[83]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[84]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[85]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[86]  Bennett A. Landman,et al.  Formulating Spatially Varying Performance in the Statistical Fusion Framework , 2012, IEEE Transactions on Medical Imaging.

[87]  Jyrki Lötjönen,et al.  Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease , 2011, NeuroImage.