NASA space cryocooler programs - an overview

Mechanical cryocoolers represent a significant enabling technology for NASA’s Earth and Space Science Enterprises. An overview is presented of ongoing efforts at the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC) in support of current flight projects, near-term flight instruments, and long-term technology development. Highlights of the past year include the launch into space of three new cryocooler systems aboard NASA missions: 1) a Sunpower 80 K Stirling cooler on the RHESSI gamma-ray spectrometer spacecraft launched February 5, 2002, 2) an 80 K Creare turbo-Brayton cooler added to the NICMOS instrument during the Hubble Space Telescope servicing mission of March 1–12, 2002, and 3) a pair of TRW 55 K pulse tube coolers on the AIRS instrument aboard the EOS Aqua platform launched May 4, 2002. In addition, a major NASA cryocooler development initiative referred to as the Advanced Cryocooler Technology Development Program (ACTDP) was kicked off with four parallel industry contracts in April, 2002. The ACTDP concepts are required to provide dual cooling at 6K and 18 K and are focused at NASA low temperature applications.

[1]  R. Boyle,et al.  Design and Performance of the HESSI Cryostat , 1999 .

[2]  Gianluca Morgante,et al.  Evaluation of hydride compressor elements for the Planck sorption cryocooler , 2002 .

[3]  R. G. Ross,et al.  JPL cryocooler development and test program: A 10-year overview , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[4]  Ronald G. Ross,et al.  TES cryocooler system design and development , 1997 .

[5]  R. G. Ross,et al.  AIRS Pulse Tube Cooler System-Level and In-Space Performance Comparison , 2003 .

[6]  D. Harvey,et al.  TES FPC Flight Pulse Tube Cooler System , 2002 .

[7]  Kimberly Shirey,et al.  Final Qualification and Early On-Orbit Performance of the RHESSI Cryocooler , 2003 .

[8]  L. J. Hastings,et al.  An overview of NASA efforts on zero boiloff storage of cryogenic propellants , 2001 .

[9]  R. G. Ross,et al.  AIRS Cryocooler System Design and Development , 1998 .

[10]  D. J. Berry,et al.  HIRDLS Instrument Flight Cryocooler Subsystem Integration and Acceptance Testing , 2002 .

[11]  T. C. Nast,et al.  Miniature Pulse Tube Cryocooler for Space Applications , 2002 .

[12]  Pradeep Bhandari,et al.  Test performance of a closed cycle continuous hydrogen sorption cryocooler , 2002 .

[13]  Mark V. Zagarola,et al.  Development of a Turbo-Brayton Cooler for 6 K Space Applications , 2003 .

[14]  R. G. Ross,et al.  TES CRYOCOOLER SYSTEM DESIGN AND DEVELOPMENT , 2001 .

[15]  R. G. Ross,et al.  AIRS PFM Pulse Tube Cooler System-Level Performance , 2002 .

[16]  T. C. Nast,et al.  Development of a 10 K Pulse Tube Cryocooler for Space Applications , 2003 .

[17]  F. C. Díaz,et al.  Research status of the variable specific impulse magnetoplasma rocket , 1999 .

[18]  R. Ross IMAS Pulse Tube Cryocooler Development and Testing , 2022 .

[19]  J. J. Breedlove,et al.  Initial Operation of the NICMOS Cryocooler on the Hubble Space Telescope , 2003 .

[20]  R. G. Ross,et al.  Gamma-Ray Pulse Tube Cooler Development and Testing , 2002 .

[21]  W. L. Swift,et al.  Flight Test Results for the NICMOS Cryocooler , 1999 .

[22]  R. G. Ross,et al.  IMAS Pulse Tube Cooler Development and Testing , 2002 .

[23]  Robert F. Boyle,et al.  Overview of NASA space cryocooler programs , 2002 .

[24]  Mark V. Zagarola,et al.  A low temperature turbo-Brayton cryocooler for space applications , 2002 .

[25]  R. Flachbart,et al.  Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications , 2002 .