Functional splines with different degrees of smoothness and their applications

[1]  Bing-Yu Chen,et al.  Geometric Modeling , 2018, Computer Graphics — Systems and Applications.

[2]  Falai Chen,et al.  CONSTRUCTING PIECEWISE ALGEBRAIC BLENDING SURFACES , 2004 .

[3]  Xiao-Shan Gao,et al.  Construct piecewise Hermite interpolation surface with blending methods , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[4]  Erich Hartmann,et al.  Gn-continuous connections between normal ringed surfaces , 2001, Comput. Aided Geom. Des..

[5]  Falai Chen,et al.  Blending Quadric Surfaces with Piecewise Algebraic Surfaces , 2001, Graph. Model..

[6]  Zhang Sanyuan,et al.  Cubic algebraic curves based on geometric constraints , 2001 .

[7]  Erich Hartmann,et al.  Implicit Gn-blending of vertices , 2001, Comput. Aided Geom. Des..

[8]  Yun-shi Zhou,et al.  On blending of several quadratic algebraic surfaces , 2000, Comput. Aided Geom. Des..

[9]  Gábor Lukács,et al.  Geometrical criteria on the higher order smoothness of composite surfaces , 1999, Comput. Aided Geom. Des..

[10]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[11]  Marco Paluszny,et al.  A family of tangent continuous cubic algebraic splines , 1993, TOGS.

[12]  Yu Feng,et al.  On the convexity of functional splines , 1993, Comput. Aided Geom. Des..

[13]  Insung Ihm,et al.  Smoothing polyhedra using implicit algebraic splines , 1992, SIGGRAPH.

[14]  Insung Ihm,et al.  Algebraic surface design with Hermite interpolation , 1992, TOGS.

[15]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[16]  E. Hartman,et al.  Blending of implicit surfaces with functional splines , 1990 .

[17]  Josef Hoschek,et al.  Gn∗-functional splines for interpolation and approximation of curves, surfaces and solids , 1990, Comput. Aided Geom. Des..

[18]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[19]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[20]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[21]  J. Hopcroft,et al.  The Potential Method for Blending Surfaces and Corners , 1985 .

[22]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .

[23]  John E. Hopcroft,et al.  Automatic surface generation in computer aided design , 2005, The Visual Computer.

[24]  Z. San THE GEOMETRIC INVARIANTS OF IMPLICIT CURVE AND SURFACE AND GEOMETRIC CONTINUITY BETWEEN IMPLICIT SURFACES , 1999 .