Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro

[1]  M. Sung,et al.  Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice , 2006, Journal of Virology.

[2]  R. Brunham,et al.  Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. , 2006, The Journal of general virology.

[3]  Zhimin Zhou,et al.  A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice , 2006, Vaccine.

[4]  Y. Zhang,et al.  Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine , 2005, Vaccine.

[5]  J. Sung,et al.  Influence of FcγRIIA and MBL polymorphisms on severe acute respiratory syndrome , 2005, Tissue antigens.

[6]  S. Morikawa,et al.  Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Diamond,et al.  Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Bo Zhang,et al.  Multiple organ infection and the pathogenesis of SARS , 2005, The Journal of experimental medicine.

[9]  B. Murphy,et al.  SARS Vaccine Protective in Mice , 2005, Emerging infectious diseases.

[10]  Wenhui Li,et al.  Evaluation of Human Monoclonal Antibody 80R for Immunoprophylaxis of Severe Acute Respiratory Syndrome by an Animal Study, Epitope Mapping, and Analysis of Spike Variants , 2005, Journal of Virology.

[11]  K. Yuen,et al.  Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. , 2005, The Journal of general virology.

[12]  Shibo Jiang,et al.  Receptor-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains Multiple Conformation-Dependent Epitopes that Induce Highly Potent Neutralizing Antibodies , 2005, The Journal of Immunology.

[13]  B. Moss,et al.  Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein , 2005, Virology.

[14]  Baoan Yang,et al.  Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines , 2005, Virology.

[15]  T. Greenough,et al.  Development and Characterization of a Severe Acute Respiratory Syndrome—Associated Coronavirus—Neutralizing Human Monoclonal Antibody That Provides Effective Immunoprophylaxis in Mice , 2005, The Journal of infectious diseases.

[16]  Kwanyee Leung,et al.  Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Samson S. Y. Wong,et al.  Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia , 2005, Journal of Virology.

[18]  B. Murphy,et al.  Severe Acute Respiratory Syndrome Coronavirus Infection of Golden Syrian Hamsters , 2005, Journal of Virology.

[19]  F. Pei,et al.  Severe Acute Respiratory Syndrome Associated Coronavirus Is Detected in Intestinal Tissues of Fatal Cases , 2005, The American Journal of Gastroenterology.

[20]  R. Proulx,et al.  Immunization with Modified Vaccinia Virus Ankara-Based Recombinant Vaccine against Severe Acute Respiratory Syndrome Is Associated with Enhanced Hepatitis in Ferrets , 2004, Journal of Virology.

[21]  Larissa B. Thackray,et al.  CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Shibo Jiang,et al.  Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine , 2004, Biochemical and Biophysical Research Communications.

[23]  R. Rappuoli,et al.  Synthesis and Characterization of a Native, Oligomeric Form of Recombinant Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein , 2004, Journal of Virology.

[24]  H. Deng,et al.  Neutralizing Antibodies in Patients with Severe Acute Respiratory Syndrome-Associated Coronavirus Infection , 2004, The Journal of Infectious Diseases.

[25]  T. Mor,et al.  A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Wright,et al.  Role of IgA versus IgG in the Control of Influenza Viral Infection in the Murine Respiratory Tract1 , 2004, The Journal of Immunology.

[27]  B. Bartosch,et al.  C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles* , 2004, Journal of Biological Chemistry.

[28]  B. Murphy,et al.  An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus , 2004, Nature Medicine.

[29]  Xiaolei Yin,et al.  Identification of an Antigenic Determinant on the S2 Domain of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Capable of Inducing Neutralizing Antibodies , 2004, Journal of Virology.

[30]  T. Kuiken,et al.  Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets , 2004, The Lancet.

[31]  K. Überla,et al.  S Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients , 2004, Journal of Virology.

[32]  J. Lepault,et al.  Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Subbarao,et al.  pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN , 2004, Journal of Virology.

[34]  B. Moss,et al.  Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Gary J. Nabel,et al.  A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice , 2004, Nature.

[36]  Michelle M. Packard,et al.  Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice , 2004, Journal of Virology.

[37]  B. Berkhout,et al.  Identification of a new human coronavirus , 2004, Nature Medicine.

[38]  G. Simmons,et al.  Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Wenhui Li,et al.  Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Xiaolei Yin,et al.  Expression cloning of functional receptor used by SARS coronavirus , 2004, Biochemical and Biophysical Research Communications.

[41]  A. Danchin,et al.  The Severe Acute Respiratory Syndrome , 2003 .

[42]  J. Bartlett Virology: SARS virus infection of cats and ferrets , 2004 .

[43]  Xiaolei Yin,et al.  Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. , 2004, The Journal of infectious diseases.

[44]  John L. Sullivan,et al.  Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.

[45]  Y. Kawaoka,et al.  Antibody‐dependent enhancement of viral infection: molecular mechanisms and in vivo implications , 2003, Reviews in medical virology.

[46]  Albert D. M. E. Osterhaus,et al.  SARS virus infection of cats and ferrets , 2003, Nature.

[47]  B. Bosch,et al.  The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex , 2003, Journal of Virology.

[48]  O. Schwartz,et al.  DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2* , 2003, Journal of Biological Chemistry.

[49]  Malik Peiris,et al.  Aetiology: Koch's postulates fulfilled for SARS virus , 2003, Nature.

[50]  S. Halstead,et al.  Neutralization and antibody-dependent enhancement of dengue viruses. , 2003, Advances in virus research.

[51]  Shinji Watanabe,et al.  Infectivity-Enhancing Antibodies to Ebola Virus Glycoprotein , 2001, Journal of Virology.

[52]  R. Altmeyer,et al.  Processing, Stability, and Receptor Binding Properties of Oligomeric Envelope Glycoprotein from a Primary HIV-1 Isolate* , 2000, The Journal of Biological Chemistry.

[53]  Frederik,et al.  Vaccines for mucosal immunity to combat emerging infectious diseases. , 2000, Emerging infectious diseases.

[54]  J. Salinas,et al.  Expression of Immunogenic Glycoprotein S Polypeptides from Transmissible Gastroenteritis Coronavirus in Transgenic Plants☆ , 1998, Virology.

[55]  E. Williamson,et al.  Comparison of the immunological and protective responses elicited by microencapsulated formulations of the F1 antigen from Yersinia pestis. , 1998, Vaccine.

[56]  M. Russell,et al.  Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant. , 1998, Vaccine.

[57]  G. Füst Enhancing antibodies in HIV infection , 1997, Parasitology.

[58]  M. Daëron Structural Bases of FcγR Functions , 1997 .

[59]  M. Daëron Structural bases of Fc gamma R functions. , 1997, International reviews of immunology.

[60]  M. Bullido,et al.  Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies , 1996, Virus Research.

[61]  G. Chappuis,et al.  Localization of antigenic sites of the S glycoprotein of feline infectious peritonitis virus involved in neutralization and antibody-dependent enhancement , 1995, Journal of virology.

[62]  R. Gupta,et al.  Adjuvants for human vaccines--current status, problems and future prospects. , 1995, Vaccine.

[63]  L. Saif,et al.  Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. , 1993, The Journal of general virology.

[64]  K.,et al.  Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages , 1992, Journal of virology.

[65]  B. Delmas,et al.  Assembly of coronavirus spike protein into trimers and its role in epitope expression , 1990, Journal of virology.

[66]  H. Vennema,et al.  Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization , 1990, Journal of virology.

[67]  S. Halstead,et al.  Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. , 1973, The Journal of infectious diseases.

[68]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .