Hyperspectral Target Detection Based on Kernels

In this chapter, linear signal or target detection algorithms are extended to nonlinear versions by using kernel-based methods. In kernel-based methods, learning is implicitly performed in a high-dimensional feature space where high order correlation or nonlinearity within the data are exploited. Nonlinear realization is mainly pursued to reduce data complexity in a high-dimensional feature space and consequently provide simpler decision rules for data discrimination.

[1]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[2]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[3]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[5]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[7]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[8]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[9]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[10]  I. Jolliffe Principal Component Analysis , 2002 .

[11]  Heesung Kwon,et al.  Unsupervised segmentation algorithm based on an iterative spectral dissimilarity measure for hyperspectral imagery , 2000, IS&T/SPIE Electronic Imaging.

[12]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[13]  Pedro E. López-de-Teruel,et al.  Nonlinear kernel-based statistical pattern analysis , 2001, IEEE Trans. Neural Networks.

[14]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[15]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[16]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[17]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[18]  Bea Thai,et al.  Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[20]  Xiaoli Yu,et al.  Comparative performance analysis of adaptive multispectral detectors , 1993, IEEE Trans. Signal Process..

[21]  David W. J. Stein Stochastic compositional models applied to subpixel analysis of hyperspectral imagery , 2002, SPIE Optics + Photonics.

[22]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[23]  Jeff J. Settle,et al.  On the relationship between spectral unmixing and subspace projection , 1996, IEEE Trans. Geosci. Remote. Sens..

[24]  Chein-I Chang,et al.  Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[26]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[27]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[28]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.

[29]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  Robert P. W. Duin,et al.  A Generalized Kernel Approach to Dissimilarity-based Classification , 2002, J. Mach. Learn. Res..

[31]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[33]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[34]  Heesung Kwon,et al.  Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .

[35]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..