Immune model-based fault diagnosis

In this paper, a novel approach to immune model-based fault diagnosis methodology for nonlinear systems is presented. The diagnosis scheme consists of forward/inverse immune model identification, filtered residual generation, the fault alarm concentration (FAC), and the artificial immune regulation (AIR). A two-link manipulator simulation was employed to validate the effectiveness and robustness of the diagnosis approach. The simulation results show that it can detect and isolate actuator faults, sensor faults, and system component faults efficiently.

[1]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[2]  Jiann-Horng Lin,et al.  A maximum entropy radial basis function network based neuro-fuzzy controller , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[3]  Alan S. Perelson,et al.  The Baldwin effect in the immune system: learning by somatic hypermutation , 1996 .

[4]  Jon Timmis,et al.  Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[5]  Yaochu Jin,et al.  Decentralized adaptive fuzzy control of robot manipulators , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Sheng-De Wang,et al.  Competitive algorithms for the clustering of noisy data , 2004, Fuzzy Sets Syst..

[8]  Peter Ballé,et al.  Fuzzy-model-based parity equations for fault isolation , 1999 .

[9]  Alexander Medvedev,et al.  Fault detection and isolation by a continuous parity space method , 1995, Autom..

[10]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[11]  Yoshiki Uchikawa,et al.  Fault diagnosis of plant systems using immune networks , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[12]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[13]  Lawrence O. Hall,et al.  An investigation of mountain method clustering for large data sets , 1997, Pattern Recognit..

[14]  N. K. Jerne,et al.  The immune system. , 1973, Scientific American.

[15]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[16]  Alan S. Perelson,et al.  The Evolution of Emergent Organization in Immune System Gene Libraries , 1995, ICGA.

[17]  Vicenç Puig,et al.  Passive robust fault detection using fuzzy parity equations , 2002, Math. Comput. Simul..

[18]  G Rizzoni,et al.  Nonlinear parity equation based residual generation for diagnosis of automotive engine faults , 1995 .

[19]  Harpreet Singh,et al.  Generating optimal adaptive fuzzy-neural models of dynamical systems with applications to control , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[20]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[21]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[22]  Jonathan Timmis,et al.  AINE: an immunological approach to data mining , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[23]  D. Dasgupta,et al.  Combining negative selection and classification techniques for anomaly detection , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[24]  Jie Chen,et al.  Observer-based fault detection and isolation: robustness and applications , 1997 .

[25]  P. Frank On-line fault detection in uncertain nonlinear systems using diagnostic observers: a survey , 1994 .

[26]  J.J. Gertler,et al.  Survey of model-based failure detection and isolation in complex plants , 1988, IEEE Control Systems Magazine.

[27]  John E. Hunt,et al.  An adaptive, distributed learning system based on the immune system , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[28]  Sirish L. Shah,et al.  Structured residual vector-based approach to sensor fault detection and isolation , 2002 .

[29]  Gustavo A. Stolovitzky,et al.  Bioinformatics: The Machine Learning Approach , 2002 .

[30]  E. Benjamini,et al.  Immunology: A Short Course , 1988 .

[31]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[32]  Paul M. Frank,et al.  New developments using AI in fault diagnosis , 1996 .

[33]  Y. M. Chen,et al.  Neural networks-based scheme for system failure detection and diagnosis , 2002, Math. Comput. Simul..

[34]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[35]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[36]  Dimitri Lefebvre,et al.  Fault detection and isolation in non-linear systems by using oversized neural networks , 2002, Math. Comput. Simul..

[37]  Paul M. Frank,et al.  Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation , 1996, IEEE Trans. Control. Syst. Technol..

[38]  G-C Luh,et al.  Inversion control of non-linear systems with an inverse NARX model identified using genetic algorithms , 2000 .

[39]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[40]  Rui Vilela Mendes,et al.  Using immunology principles for fault detection , 2003, IEEE Trans. Ind. Electron..

[41]  H Guterman,et al.  Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks. , 2002, Biotechnology and bioengineering.

[42]  M FrankPaul Fault diagnosis in dynamic systems using analytical and knowledge-based redundancya survey and some new results , 1990 .

[43]  Madasu Hanmandlu,et al.  Structure identification of generalized adaptive neuro-fuzzy inference systems , 2003, IEEE Trans. Fuzzy Syst..

[44]  G-C Luh,et al.  Non-linear system identification using an artificial immune system , 2001 .

[45]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[46]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .