Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure

[1]  Julie A. Silva,et al.  Assessing Protected Area's Carbon Stocks and Ecological Structure at Regional-Scale Using Gedi Lidar , 2023, SSRN Electronic Journal.

[2]  Xiyan Xu,et al.  Protected areas provide thermal buffer against climate change , 2022, Science advances.

[3]  L. Rodriguez,et al.  Forest disturbance and growth processes are reflected in the geographical distribution of large canopy gaps across the Brazilian Amazon , 2022, Journal of Ecology.

[4]  S. Goetz,et al.  GEDI launches a new era of biomass inference from space , 2022, Environmental Research Letters.

[5]  Nadejda A. Soudzilovskaia,et al.  High exposure of global tree diversity to human pressure , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  E. Lines,et al.  The shape of trees: Reimagining forest ecology in three dimensions with remote sensing , 2022, Journal of Ecology.

[7]  Pat L. Scaramuzza,et al.  Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2 , 2022, Remote Sensing of Environment.

[8]  Roberta E. Martin,et al.  Improving landscape‐scale productivity estimates by integrating trait‐based models and remotely‐sensed foliar‐trait and canopy‐structural data , 2022, Ecography.

[9]  F. Kraxner,et al.  Global forest management data for 2015 at a 100 m resolution , 2022, Scientific data.

[10]  J. D. Wegner,et al.  A high-resolution canopy height model of the Earth , 2022, Nature Ecology & Evolution.

[11]  G. Henebry,et al.  Creating an Earth Archive , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Dubayah,et al.  The use of GEDI canopy structure for explaining variation in tree species richness in natural forests , 2022, Environmental Research Letters.

[13]  S. Fritz,et al.  The global exposure of species ranges and protected areas to forest management , 2022, bioRxiv.

[14]  I. Woodhouse,et al.  Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage , 2021, Royal Society Open Science.

[15]  C. Beierkuhnlein,et al.  Landscape fragmentation of the Natura 2000 network and its surrounding areas , 2021, PloS one.

[16]  Zhuoqi Chen,et al.  Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals , 2021 .

[17]  R. Gregory,et al.  The extent and effectiveness of protected areas in the UK , 2021, Global Ecology and Conservation.

[18]  T. A. Black,et al.  The three major axes of terrestrial ecosystem function , 2021, Nature.

[19]  C. A. Mücher,et al.  Priority list of biodiversity metrics to observe from space , 2021, Nature Ecology & Evolution.

[20]  P. Beck,et al.  Emergent vulnerability to climate-driven disturbances in European forests , 2021, Nature Communications.

[21]  H. Pereira,et al.  Ensuring effective implementation of the post-2020 global biodiversity targets , 2021, Nature Ecology & Evolution.

[22]  S. Stephens,et al.  Global patterns and climatic controls of forest structural complexity , 2021, Nature Communications.

[23]  M. Hansen,et al.  Mapping global forest canopy height through integration of GEDI and Landsat data , 2020 .

[24]  Juan C. Rocha,et al.  Set ambitious goals for biodiversity and sustainability , 2020, Science.

[25]  A. Rodrigues,et al.  The multifaceted challenge of evaluating protected area effectiveness , 2020, Nature Communications.

[26]  Olivier R. van Lier,et al.  A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data , 2020 .

[27]  C. Gough,et al.  Community and structural constraints on the complexity of eastern North American forests , 2020 .

[28]  Guopeng Ren,et al.  Control selection for the assessment of protected areas in the Hengduan Mountains: A case study in Yunlong Tianchi National Nature Reserve, China , 2020 .

[29]  Cornelius Senf,et al.  The response of canopy height diversity to natural disturbances in two temperate forest landscapes , 2020, Landscape Ecology.

[30]  V. Pellissier,et al.  Forest canopy height co‐determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally , 2020 .

[31]  Jean‐François Bastin,et al.  Evaluating the potential of full‐waveform lidar for mapping pan‐tropical tree species richness , 2020, Global Ecology and Biogeography.

[32]  Aki Vehtari,et al.  Regression and Other Stories , 2020 .

[33]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography , 2020, Science of Remote Sensing.

[34]  Michael Obersteiner,et al.  Bending the curve of terrestrial biodiversity needs an integrated strategy , 2020, Nature.

[35]  J. Tallant,et al.  Defining a spectrum of integrative trait-based vegetation canopy structural types. , 2019, Ecology letters.

[36]  A. Manica,et al.  A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures , 2019, Proceedings of the National Academy of Sciences.

[37]  Arie C. Seijmonsbergen,et al.  Use and categorization of Light Detection and Ranging vegetation metrics in avian diversity and species distribution research , 2019, Diversity and Distributions.

[38]  J. Watson,et al.  Protected area targets post-2020 , 2019, Science.

[39]  Tommaso Jucker,et al.  Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes , 2018, Global change biology.

[40]  Andrew T. Hudak,et al.  Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests , 2018, Remote Sensing of Environment.

[41]  C. Gough,et al.  Spatial Variation in Canopy Structure across Forest Landscapes , 2018, Forests.

[42]  Carl Seielstad,et al.  A data-driven framework to identify and compare forest structure classes using LiDAR , 2018 .

[43]  Marco Heurich,et al.  LiDAR‐derived canopy structure supports the more‐individuals hypothesis for arthropod diversity in temperate forests , 2018 .

[44]  Pierre Soille,et al.  A versatile data-intensive computing platform for information retrieval from big geospatial data , 2018, Future Gener. Comput. Syst..

[45]  L. Bastin,et al.  Protected area connectivity: Shortfalls in global targets and country-level priorities , 2018, Biological conservation.

[46]  Hugh P Possingham,et al.  Bias in protected‐area location and its effects on long‐term aspirations of biodiversity conventions , 2018, Conservation biology : the journal of the Society for Conservation Biology.

[47]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[48]  J. Biesmeijer,et al.  Butterflies show different functional and species diversity in relationship to vegetation structure and land use , 2017 .

[49]  Guoqing Sun,et al.  The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. , 2017, Remote sensing of environment.

[50]  Petteri Packalen,et al.  Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data , 2017 .

[51]  Miroslav Svoboda,et al.  Forest disturbances under climate change. , 2017, Nature climate change.

[52]  G. Asner,et al.  Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation , 2017, Science.

[53]  Jeffrey A. Wolf,et al.  Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing. , 2015, Ecological applications : a publication of the Ecological Society of America.

[54]  Volker C. Radeloff,et al.  Legacies of 19th century land use shape contemporary forest cover , 2015 .

[55]  C. A. Mücher,et al.  Environmental science: Agree on biodiversity metrics to track from space , 2015, Nature.

[56]  Y. Yom-Tov,et al.  Linking vertebrate species richness to tree canopy height on a global scale , 2015 .

[57]  Feng Zhao,et al.  Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR , 2014, Remote. Sens..

[58]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[59]  S. Gower,et al.  Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps , 2012 .

[60]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[61]  Alexander Pfaff,et al.  Global protected area impacts , 2010, Proceedings of the Royal Society B: Biological Sciences.

[62]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[63]  Nicholas C. Coops,et al.  Forest fragmentation, structure, and age characteristics as a legacy of forest management. , 2009 .

[64]  Roland Brandl,et al.  Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages , 2009 .

[65]  G. Henebry,et al.  Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions , 2009 .

[66]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[67]  H. Jactel,et al.  Tree diversity reduces herbivory by forest insects. , 2007, Ecology letters.

[68]  Phillip B. Gibbons,et al.  Forest and woodland stand structural complexity: Its definition and measurement , 2005 .

[69]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[70]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[71]  J. Mcneely Protected areas for the 21st century: working to provide benefits to society , 1994, Biodiversity & Conservation.

[72]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[73]  R. Macarthur,et al.  Foliage Profile by Vertical Measurements , 1969 .

[74]  R. Macarthur,et al.  On Bird Species Diversity , 1961 .

[75]  J. Hagar,et al.  Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species , 2020 .

[76]  L. Vogt Statistics For Spatial Data , 2016 .

[77]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[78]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[79]  United Kingdom,et al.  GLOBAL FOREST RESOURCES ASSESSMENT 2005 , 2005 .