Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries designed for rapid PCR-based sequencing.

Chemically synthesized combinatorial libraries of unmodified or modified nucleic acids have not previously been used in methods to rapidly select oligonucleotides binding to target biomolecules such as proteins. Phosphorothioate oligonucleotides (S-ODNs) or phosphorodithioate oligonucleotides (S2-ODNs) with sulfurs replacing one or both of the non-bridging phosphate oxygens bind to proteins more tightly than unmodified oligonucleotides and have the potential to be used as diagnostic reagents and therapeutics. We have applied a split synthesis methodology to create one-bead one-S-ODN and one-bead one-S2-ODN libraries. Binding and selection of specific beads to the transcription factor NF-kappaB p50/p50 protein were demonstrated. Sequencing both the nucleic acid bases and the positions of any 3'-O-thioate/dithioate linkages was carried out by using a novel PCR-based identification tag of the selected beads. This approach allows us to rapidly and conveniently identify S-ODNs or S2-ODNs that bind to proteins.

[1]  G. Gish,et al.  DNA and RNA sequence determination based on phosphorothioate chemistry. , 1988, Science.

[2]  B. Sullenger,et al.  Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies , 1997, Nature Biotechnology.

[3]  S. Agrawal,et al.  GEM 91--an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS. , 1992, Antisense research and development.

[4]  T. Wada,et al.  Diastereocontrolled synthesis of dinucleoside phosphorothioates using a novel class of activators, dialkyl(cyanomethyl)ammonium tetrafluoroborates. , 2002, Journal of the American Chemical Society.

[5]  M. Caruthers,et al.  Synthesis and Characterization of Dinucleoside Phosphorodithioates. , 1988 .

[6]  L. Gold,et al.  SELEX and the evolution of genomes. , 1997, Current opinion in genetics & development.

[7]  Kit S. Lam,et al.  The "One-Bead-One-Compound" Combinatorial Library Method. , 1997, Chemical reviews.

[8]  K. Jayaraman,et al.  Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. , 1979, Biochemistry.

[9]  Fritz Eckstein,et al.  Synthesis of Nucleoside 5′-O-(1,3-Dithiotriphosphates) and 5′-O-(1,1- Dithiotriphosphates). , 1991 .

[10]  G. Boons,et al.  A Two-Directional Approach for the Solid-Phase Synthesis of Trisaccharide Libraries , 1998 .

[11]  K. Lam,et al.  Synthetic peptide libraries , 1997 .

[12]  D. Gorenstein,et al.  Separation of synthetic oligonucleotide dithioates from monothiophosphate impurities by anion-exchange chromatography on a mono-q column. , 2002, Analytical biochemistry.

[13]  M. Caruthers,et al.  Synthesis and characterization of dinucleoside phosphorodithioates , 1988 .

[14]  R. Breaker,et al.  Molecular recognition of cAMP by an RNA aptamer. , 2000, Biochemistry.

[15]  W. Stec,et al.  Deoxyribonucleoside 3‘-O-(2-Thio- and 2-Oxo-“spiro”-4,4-pentamethylene-1,3,2-oxathiaphospholane)s: Monomers for Stereocontrolled Synthesis of Oligo(deoxyribonucleoside phosphorothioate)s and Chimeric PS/PO Oligonucleotides§ , 1998 .

[16]  Kenshi Hayashi Manipulation of DNA by PCR , 1994 .

[17]  C. Vargeese,et al.  Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. , 1995, Biochemistry.

[18]  St Hilaire PM,et al.  Glycopeptide and Oligosaccharide Libraries. , 1999, Angewandte Chemie.

[19]  R. Gibbs,et al.  The Polymerase Chain Reaction , 1994, Birkhäuser Boston.

[20]  S. Harrison,et al.  Structure of the NF-kappa B p50 homodimer bound to DNA. , 1995, Nature.

[21]  P. Sigler,et al.  Structure of NF-κB p50 homodimer bound to a κB site , 1998, Nature.

[22]  D. Volk,et al.  Solution structure and design of dithiophosphate backbone aptamers targeting transcription factor NF-κB , 2002 .

[23]  C. Stein Exploiting the potential of antisense: beyond phosphorothioate oligodeoxynucleotides. , 1996, Chemistry & biology.

[24]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[25]  D. Gorenstein,et al.  Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. , 1998, Biochemistry.

[26]  G. Fassina,et al.  Combinatorial Chemistry and Technology: Principles, Methods and Applications , 1999 .

[27]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[28]  R. Vinayak,et al.  Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. , 1998, Biochemistry.

[29]  D. Seripa,et al.  Stability and functional effectiveness of phosphorothioate modified duplex DNA and synthetic 'mini-genes'. , 1995, Nucleic acids research.

[30]  M. Caruthers,et al.  Synthesis of Phosphorodithioate DNA via Sulfur-Linked, Base-Labile Protecting Groups(1). , 1996, The Journal of organic chemistry.

[31]  F. Eckstein,et al.  Nucleoside phosphorothioates. , 1970, Journal of the American Chemical Society.

[32]  H. W. Sharma,et al.  Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. , 1996, Anticancer research.

[33]  D. Gorenstein,et al.  Aptamers containing thymidine 3'-O-phosphorodithioates: synthesis and binding to nuclear factor-kappaB. , 1999, Bioorganic & medicinal chemistry letters.

[34]  Volker A. Erdmann,et al.  Mirror-design of L-oligonucleotide ligands binding to L-arginine , 1996, Nature Biotechnology.

[35]  L. J. Maher,et al.  Selection and Characterization of an RNA Decoy for Transcription Factor NF-κB† , 1999 .

[36]  J. Toulmé,et al.  Towards the selection of phosphorothioate aptamers , 2000 .

[37]  D. Gorenstein,et al.  Preparation of a deoxynucleoside thiophosphoramidite intermediate in the synthesis of nucleoside phosphorodithioates , 1988 .

[38]  M. Caruthers,et al.  Phosphorodithioate DNA as a potential therapeutic drug. , 1993, Science.

[39]  Kit S. Lam,et al.  A new type of synthetic peptide library for identifying ligand-binding activity , 1992, Nature.

[40]  W. C. Still,et al.  Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library , 1996, Science.

[41]  S. Beaucage,et al.  Deoxyribonucleoside Cyclic N-Acylphosphoramidites as a New Class of Monomers for the Stereocontrolled Synthesis of Oligothymidylyl- and Oligodeoxycytidylyl- Phosphorothioates , 2000 .

[42]  D. Patel,et al.  Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide–RNA aptamer complex , 1996, Nature Structural Biology.

[43]  G. Ghosh,et al.  Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA , 1998, Nature.

[44]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[45]  D. Volk,et al.  An ab initio study of phosphorothioate and phosphorodithioate interactions with sodium cation , 2002 .

[46]  W. Stec,et al.  The First Stereocontrolled Solid-Phase Synthesis of Di-, Tri-, and Tetra[adenosine (2',5') phosphorothioate]s. , 1998, The Journal of organic chemistry.

[47]  Fritz Eckstein,et al.  Synthesis of nucleoside 5'-O-(1,3-dithiotriphosphates) and 5'-O-(1,1-dithiotriphosphates) , 1991 .

[48]  E. Uhlmann,et al.  Antisense oligonucleotides: a new therapeutic principle , 1990 .

[49]  D. Gorenstein,et al.  Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. , 2002, Biochemistry.

[50]  T. Geiser,et al.  Phosphorothioate oligonucleotides: chemistry, purification, analysis, scale-up and future directions. , 1991, Anti-cancer drug design.

[51]  O. Uhlenbeck,et al.  Determination of RNA-protein contacts using thiophosphate substitutions. , 1989, Biochemistry.

[52]  W. Stec,et al.  Stereocontrolled Synthesis of Oligo(nucleoside phosphorothioate)s , 1994 .