Optimization of an inverted organic solar cell

Abstract An inverted organic solar cell, consisting of an ultrathin Ca layer for electron transport, the blend of poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 for photon absorption, and a MoO 3 layer for hole transport, is optimized. The insertion of MoO 3 layer between photoactive layer and Ag anode has been demonstrated to improve both the photocurrent and the fill factor. By optical modeling and experiment, we find that the MoO 3 layer also functions as an optical spacer for thin devices. For the optimized device with an active layer thickness of 85 nm, Ca thickness of 0.5 nm, and MoO 3 layer thickness of 5 nm, a maximum power conversion efficiency of 3.86% was achieved.

[1]  Guo-Qiang Lo,et al.  Efficient tandem organic solar cells with an Al/MoO3 intermediate layer , 2008 .

[2]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[3]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .

[4]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[5]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[6]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .

[7]  Xindong Zhang,et al.  Role of tungsten oxide in inverted polymer solar cells , 2009 .

[8]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[9]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[10]  Adam J. Moulé,et al.  An optical spacer is no panacea for light collection in organic solar cells , 2009 .

[11]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[12]  S. H. Park,et al.  Titanium suboxide as an optical spacer in polymer solar cells , 2009 .

[13]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[14]  Chun-Sing Lee,et al.  Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer , 2006 .

[15]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[16]  Shih-Wei Lee,et al.  Polymer photovoltaic devices with highly transparent cathodes , 2008 .

[17]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[18]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[19]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[20]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[21]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[22]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[23]  Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells , 2009 .

[24]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[25]  Xiao Wei Sun,et al.  An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer , 2009 .

[26]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[27]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[28]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[29]  Christoph J. Brabec,et al.  Organic photovoltaics : concepts and realization , 2003 .

[30]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[31]  Christoph J. Brabec,et al.  Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells , 2008 .

[32]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[33]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[34]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[35]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[36]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[37]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[38]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[39]  G. Lo,et al.  An Efficient Triple-Tandem Polymer Solar Cell , 2009, IEEE Electron Device Letters.

[40]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[41]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[42]  Fang-Chung Chen,et al.  Cesium carbonate as a functional interlayer for polymer photovoltaic devices , 2008 .