A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR

Abstract Quantum-dot cellular automata is one of the best alternative technologies of CMOS at nano-scale. It is an emerging technology promising to design circuits with low power consumption, high density as well as high speed. In this paper, a novel 3-input XOR gate based on the cellular interaction is first proposed which consists of 10 cells and requires two clocks. To demonstrate the efficiency of the proposed XOR gate, an optimized single-layer full-adder is designed here which contains only 20 cells and requires three clock phases. In order to verify the function of the proposed full-adder, some physical proofs and computer simulations are provided. The simulations are carried out by QCADesigner2.0.3. The proposed full-adder shows 24% and 9.09% improvement in cell count in comparison to the best previous single-layer and multi-layer full-adder designs, respectively. In addition, the power consumption of the proposed full-adder is calculated by QCAPro tool. The results of power dissipation analysis show that the proposed full-adder has the lowest energy consumption compared to the previous designs.

[1]  Saeed Rasouli Heikalabad,et al.  A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures , 2017 .

[2]  Keivan Navi,et al.  A Novel Robust QCA Full-adder☆ , 2015 .

[3]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[4]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[5]  Keivan Navi,et al.  Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata , 2014, J. Low Power Electron..

[6]  Earl E. Swartzlander,et al.  Design of Goldschmidt Dividers with Quantum-Dot Cellular Automata , 2014, IEEE Transactions on Computers.

[7]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[8]  Saeed Rasouli Heikalabad,et al.  A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis , 2018 .

[9]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[10]  Seong-Wan Kim,et al.  Design of parallel multipliers and dividers in quantum-dot cellular automata , 2011 .

[11]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[12]  Saeed Rasouli Heikalabad,et al.  A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata , 2017 .

[13]  Milad Sangsefidi,et al.  Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover , 2015, IEEE Transactions on Nanotechnology.

[14]  Saeed Rasouli Heikalabad,et al.  A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata , 2017 .

[15]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[16]  Debasis Mitra,et al.  Design of a practical fault-tolerant adder in QCA , 2016, Microelectron. J..

[17]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[18]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[19]  K. Sridharan,et al.  Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA , 2012, IEEE Transactions on Nanotechnology.

[20]  Mohammad Mosleh,et al.  A Review on QCA Multiplexer Designs , 2017 .

[21]  Sheema Soltany,et al.  High-performance multiplexer architecture for quantum-dot cellular automata , 2016 .

[22]  Faranak Rabiei,et al.  Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate , 2017 .

[23]  Lei Wang,et al.  Novel designs of full adder in quantum-dot cellular automata technology , 2018, The Journal of Supercomputing.

[24]  Heumpil Cho Adder and multiplier design and analysis in quantum-dot cellular automata , 2006 .

[25]  Keivan Navi,et al.  A symmetric quantum-dot cellular automata design for 5-input majority gate , 2014 .

[26]  Sajjad Waheed,et al.  A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis , 2017 .

[27]  Saeed Rasouli Heikalabad,et al.  A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis , 2018, The Journal of Supercomputing.

[28]  Saeed Rasouli Heikalabad,et al.  A Unique Reversible Gate in Quantum-dot Cellular Automata for Implementation of Four Flip-flops Without Garbage Outputs , 2018 .

[29]  Shaahin Angizi,et al.  Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells , 2016, J. Comput. Sci..

[30]  Carson Labrado,et al.  Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing , 2016 .

[31]  Nima Jafari Navimipour,et al.  Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata , 2018, Nano Commun. Networks.

[32]  Mohammad Mosleh,et al.  A novel fault-tolerant multiplexer in quantum-dot cellular automata technology , 2018, The Journal of Supercomputing.

[33]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[34]  Saeed Rasouli Heikalabad,et al.  Reversible Flip-Flops in Quantum-Dot Cellular Automata , 2017, International Journal of Theoretical Physics.

[35]  Bandani Sousan Hojatallah,et al.  Designing and Implementing a Fast and Robust Full-Adder in Quantum-Dot Cellular Automata (QCA) Technology , 2015 .

[36]  Mostafa Rahimi Azghadi,et al.  A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders , 2007, ArXiv.

[37]  Razieh Farazkish,et al.  Novel efficient fault-tolerant full-adder for quantum-dot cellular automata , 2018 .

[38]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[39]  Ronald F. DeMara,et al.  Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder , 2015, Microelectron. J..

[40]  S. Bhanja,et al.  Estimation of Upper Bound of Power Dissipation in QCA Circuits , 2009, IEEE Transactions on Nanotechnology.

[41]  Mostafa Rahimi Azghadi,et al.  Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata , 2015, Inf. Sci..

[42]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[43]  Ibrahim A. Halloun,et al.  Common sense concepts about motion , 1985 .

[44]  Abdalhossein Rezai,et al.  High-performance full adder architecture in quantum-dot cellular automata , 2017 .

[45]  Eby G. Friedman,et al.  System Timing , 2000, The VLSI Handbook.

[46]  Mostafa Rahimi Azghadi,et al.  A new quantum-dot cellular automata full-adder , 2016, 2016 5th International Conference on Computer Science and Network Technology (ICCSNT).

[47]  L. McDermott Research on conceptual understanding in mechanics , 1984 .

[48]  Keivan Navi,et al.  New robust QCA D flip flop and memory structures , 2012, Microelectron. J..

[49]  Bibhash Sen,et al.  Design of Efficient Full Adder in Quantum-Dot Cellular Automata , 2013, TheScientificWorldJournal.

[50]  Saeed Rasouli Heikalabad,et al.  A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification , 2018 .

[51]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[52]  Mostafa Rahimi Azghadi,et al.  Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata , 2010 .

[53]  Keivan Navi,et al.  An Efficient Quantum-Dot Cellular Automata Full Adder Based on a New Convertible 7-Input Majority-Not Gate , 2020, IETE Journal of Research.

[54]  Ismo Hänninen,et al.  Binary Adders on Quantum-Dot Cellular Automata , 2010, J. Signal Process. Syst..

[55]  Gurmohan Singh,et al.  Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder , 2017 .

[56]  Keivan Navi,et al.  Efficient QCA Exclusive-or and Multiplexer Circuits Based on a Nanoelectronic-Compatible Designing Approach , 2014, International scholarly research notices.

[57]  Ahmad Habibizad Navin,et al.  Content addressable memory cell in quantum-dot cellular automata , 2016 .

[58]  Saeed Rasouli Heikalabad,et al.  A testable parity conservative gate in quantum-dot cellular automata , 2017 .

[59]  Firdous Ahmad,et al.  An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization , 2018, Microprocess. Microsystems.

[60]  Razieh Farazkish,et al.  Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata , 2015, Microprocess. Microsystems.

[61]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[62]  Saket Srivastava,et al.  QCAPro - An error-power estimation tool for QCA circuit design , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[63]  Nima Jafari Navimipour,et al.  An optimized design of full adder based on nanoscale quantum-dot cellular automata , 2018 .

[64]  Mohammad Mohammadi,et al.  An efficient design of full adder in quantum-dot cellular automata (QCA) technology , 2016, Microelectron. J..

[65]  Saeed Rasouli Heikalabad,et al.  Binary to gray and gray to binary converter in quantum-dot cellular automata , 2017 .

[66]  Trailokya Nath Sasamal,et al.  An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata , 2016 .

[67]  Bahniman Ghosh,et al.  Ripple carry adder using five input majority gates , 2012 .

[68]  Saeed Rasouli Heikalabad,et al.  Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata , 2018 .

[69]  A. Safavi,et al.  Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate , 2016 .

[70]  Ramesh Karri,et al.  The Robust QCA Adder Designs Using Composable QCA Building Blocks , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.