Bayesian inference of non-linear multiscale model parameters accelerated by a Deep Neural Network
暂无分享,去创建一个
Ludovic Noels | Ling Wu | Kepa Zulueta | Zoltan Major | Aitor Arriaga | A. Arriaga | L. Noels | Z. Major | Ling Wu | K. Zulueta
[1] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[2] Charles L. Tucker,et al. Stiffness and thermal expansion predictions for hybrid short fiber composites , 1990 .
[3] Stéphane Bordas,et al. A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics , 2019, Archives of Computational Methods in Engineering.
[4] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[5] Hussein Rappel,et al. Estimating fibres’ material parameter distributions from limited data with the help of Bayesian inference , 2019, European Journal of Mechanics - A/Solids.
[6] Andrea Vigliotti,et al. Bayesian inference of the spatial distributions of material properties , 2018, Journal of the Mechanics and Physics of Solids.
[7] J. Willis,et al. Variational Principles for Inhomogeneous Non-linear Media , 1985 .
[8] Rodney Hill,et al. Continuum micro-mechanics of elastoplastic polycrystals , 1965 .
[9] Thomas Most,et al. Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating , 2010 .
[10] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[11] Hedi Nouri. Modélisation et identification de lois de comportement avec endommagement en fatigue polycyclique de matériaux composite a matrice thermoplastique , 2009 .
[12] Marc G. D. Geers,et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..
[13] Pedro Ponte Castañeda. A new variational principle and its application to nonlinear heterogeneous systems , 1992 .
[14] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[15] B. Kenmeugne,et al. Improvements of multiaxial fatigue criteria computation for a strong reduction of calculation duration , 1999 .
[16] Ludovic Noels,et al. Bayesian identification of Mean-Field Homogenization model parameters and uncertain matrix behavior in non-aligned short fiber composites , 2019, Composite Structures.
[17] Wei Chen,et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality , 2017 .
[18] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[19] I. Doghri,et al. A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites , 2013 .
[20] Kumar Vemaganti,et al. A Bayesian approach to selecting hyperelastic constitutive models of soft tissue , 2015 .
[21] M. Vincent,et al. Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics , 2005 .
[22] Fredrik Larsson,et al. On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling , 2019, Front. Mater..
[23] Carsten Könke,et al. Coupling of scales in a multiscale simulation using neural networks , 2008 .
[24] J. Beck,et al. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .
[25] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[26] John R. Willis,et al. Bounds and self-consistent estimates for the overall properties of nonlinear composites , 1987 .
[27] Francesco Ubertini,et al. Estimation of elastic constants of thick laminated plates within a Bayesian framework , 2007 .
[28] B. A. Le,et al. Computational homogenization of nonlinear elastic materials using neural networks , 2015 .
[30] I. Doghri,et al. Micromechanics of inelastic composites with misaligned inclusions: Numerical treatment of orientation , 2006 .
[31] K. Ip,et al. Parameter estimation of orthotropic plates by Bayesian sensitivity analysis , 1996 .