Theranostic Mesoporous Silica Nanoparticles Biodegrade after Pro-Survival Drug Delivery and Ultrasound/Magnetic Resonance Imaging of Stem Cells

Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)—a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.

[1]  R. Montis,et al.  Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. , 2015, Chemical Society reviews.

[2]  N de Jong,et al.  Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force , 2015, Biotechnology and bioengineering.

[3]  Charles E. Murry,et al.  Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts , 2014, Nature.

[4]  Bolin Liu,et al.  Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. , 2014, Colloids and surfaces. B, Biointerfaces.

[5]  F. Stuart Foster,et al.  Biogenic Gas Nanostructures as Ultrasonic Molecular Reporters , 2014, Nature nanotechnology.

[6]  A. Klibanov Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging , 2013, Journal of Cardiovascular Translational Research.

[7]  Christopher V. Barback,et al.  Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells. , 2013, ACS nano.

[8]  S. Gruner,et al.  Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism , 2013, Science.

[9]  Jesse V. Jokerst,et al.  Intracellular Aggregation of Multimodal Silica Nanoparticles for Ultrasound-Guided Stem Cell Implantation , 2013, Science Translational Medicine.

[10]  C. Hedrick,et al.  Molecular Imaging of the Paracrine Proangiogenic Effects of Progenitor Cell Therapy in Limb Ischemia , 2013, Circulation.

[11]  Eric C. Carnes,et al.  Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. , 2013, Accounts of chemical research.

[12]  J. Fraser Stoddart,et al.  Mesoporous Silica Nanoparticles in Biomedical Applications , 2012 .

[13]  Christopher V. Barback,et al.  Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. , 2012, Biomaterials.

[14]  Jesse V Jokerst,et al.  Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. , 2012, ACS nano.

[15]  Daniel Berman,et al.  Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial , 2012, The Lancet.

[16]  Yingchun Zhu,et al.  Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow pH range , 2012 .

[17]  Stanislav Emelianov,et al.  Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging , 2012, Nature Communications.

[18]  Marcus F Stoddard,et al.  Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial , 2011, The Lancet.

[19]  P. Nguyen,et al.  Imaging: guiding the clinical translation of cardiac stem cell therapy. , 2011, Circulation research.

[20]  Richard T. Lee,et al.  Biomaterials to enhance stem cell function in the heart. , 2011, Circulation research.

[21]  Gordana Vunjak-Novakovic,et al.  Bioengineering heart muscle: a paradigm for regenerative medicine. , 2011, Annual review of biomedical engineering.

[22]  Srikanth K. Iyer,et al.  Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. , 2011, The Journal of clinical investigation.

[23]  Dong Chen,et al.  The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. , 2011, ACS nano.

[24]  Zongxi Li,et al.  Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. , 2011, ACS nano.

[25]  Francesco Conversano,et al.  Optimal Enhancement Configuration of Silica Nanoparticles for Ultrasound Imaging and Automatic Detection at Conventional Diagnostic Frequencies , 2010, Investigative radiology.

[26]  J. Wang-Rodriguez,et al.  Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. , 2010, MedChemComm.

[27]  Mauro Ferrari,et al.  Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast , 2010, Nature nanotechnology.

[28]  Soong Ho Um,et al.  Therapeutic cell engineering using surface-conjugated synthetic nanoparticles , 2010, Nature Medicine.

[29]  H. Santos,et al.  Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  Luis Solorio,et al.  Formulation and characterization of echogenic lipid-Pluronic nanobubbles. , 2009, Molecular pharmaceutics.

[31]  J. Lindner,et al.  Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles. , 2009, Cardiovascular research.

[32]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[33]  Y. Kyōgoku,et al.  Three-dimensional structure of human insulin-like growth factor-I (IGF-I) determined by 1H-NMR and distance geometry. , 2009, International journal of peptide and protein research.

[34]  Klaas Nicolay,et al.  Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. , 2008, Bioconjugate chemistry.

[35]  H. Haider,et al.  IGF-1–Overexpressing Mesenchymal Stem Cells Accelerate Bone Marrow Stem Cell Mobilization via Paracrine Activation of SDF-1α/CXCR4 Signaling to Promote Myocardial Repair , 2008, Circulation research.

[36]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[37]  Weili Lin,et al.  Mesoporous silica nanospheres as highly efficient MRI contrast agents. , 2008, Journal of the American Chemical Society.

[38]  Lila R Collins,et al.  Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts , 2007, Nature Biotechnology.

[39]  S. Gambhir,et al.  Studying the biodistribution of positron emission tomography reporter probes in mice , 2007, Nature Protocols.

[40]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[41]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[42]  Weili Lin,et al.  Hybrid silica nanoparticles for multimodal imaging. , 2007, Angewandte Chemie.

[43]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[44]  Richard T. Lee,et al.  Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Kathryn Sharer,et al.  In vivo detection of single cells by MRI , 2006, Magnetic resonance in medicine.

[46]  Wei-Hsuan Chen,et al.  The FASEB Journal express article 10.1096/fj.05-4288fje. Published online October 17, 2005. , 2022 .

[47]  S. Gambhir,et al.  Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  Arend Heerschap,et al.  Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy , 2005, Nature Biotechnology.

[49]  Y. Tang,et al.  Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. , 2005, Journal of the American College of Cardiology.

[50]  J. Riess,et al.  Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. , 2003, Angewandte Chemie.

[51]  W. Tan,et al.  Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. , 2001, Analytical chemistry.

[52]  Yunfeng Lu,et al.  Aerosol-assisted self-assembly of mesostructured spherical nanoparticles , 1999, Nature.

[53]  Simon C Watkins,et al.  Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. , 1998, Circulation.

[54]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[55]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[56]  F. Kremkau,et al.  Artifacts in ultrasound imaging. , 1986, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[57]  J. George Stem cell therapy in acute myocardial infarction: a review of clinical trials. , 2010, Translational research : the journal of laboratory and clinical medicine.

[58]  K. Finnie,et al.  Biodegradability of sol–gel silica microparticles for drug delivery , 2009 .

[59]  Michelle Bradbury,et al.  Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. , 2009, Nano letters.

[60]  R. Kozłowski,et al.  The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. , 1993, Journal of immunological methods.