Incremental Place Recognition in 3D Point Clouds

vii

[1]  Slobodan Ilic,et al.  A Hierarchical Voxel Hash for Fast 3D Nearest Neighbor Lookup , 2013, GCPR.

[2]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[3]  Renaud Dubé,et al.  SegMatch: Segment based place recognition in 3D point clouds , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Torsten Sattler,et al.  SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Samuli Laine,et al.  Efficient Sparse Voxel Octrees , 2011, IEEE Trans. Vis. Comput. Graph..

[6]  David Eppstein,et al.  Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[9]  Michael Bosse,et al.  Place recognition using keypoint voting in large 3D lidar datasets , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Ricardo J. G. B. Campello,et al.  Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.

[12]  Nicholas Ayache,et al.  Efficient registration of stereo images by matching graph descriptions of edge segments , 1987, International Journal of Computer Vision.

[13]  R. Siegwart,et al.  A Partitioned Approach for Efficient Graph-Based Place Recognition , 2017 .

[14]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[15]  Akira Tanaka,et al.  The worst-case time complexity for generating all maximal cliques and computational experiments , 2006, Theor. Comput. Sci..

[16]  Renaud Dubé,et al.  Learning 3D Segment Descriptors for Place Recognition , 2018, ArXiv.

[17]  Andreas Birk,et al.  Fast plane detection and polygonalization in noisy 3D range images , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[19]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[21]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[22]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  T. Kanade,et al.  Fast and accurate computation of surface normals from range images , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[25]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[26]  Florentin Wörgötter,et al.  Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Wei-keng Liao,et al.  Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs , 2012, WAW.

[28]  Markus Vincze,et al.  Ensemble of shape functions for 3D object classification , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[29]  Dirk Schulz,et al.  A fast histogram-based similarity measure for detecting loop closures in 3-D LIDAR data , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[30]  Javier González,et al.  Fast place recognition with plane-based maps , 2013, 2013 IEEE International Conference on Robotics and Automation.

[31]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[32]  Alexandre Boulch,et al.  Fast and Robust Normal Estimation for Point Clouds with Sharp Features , 2012, Comput. Graph. Forum.

[33]  T. Rabbani,et al.  SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT , 2006 .

[34]  Boris Jutzi,et al.  Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features , 2014 .

[35]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[36]  Cyrill Stachniss,et al.  Efficient Online Segmentation for Sparse 3D Laser Scans , 2017, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.

[37]  Peter H. N. de With,et al.  Incremental and batch planar simplification of dense point cloud maps , 2015, Robotics Auton. Syst..

[38]  David Eppstein,et al.  Listing All Maximal Cliques in Large Sparse Real-World Graphs , 2011, JEAL.

[39]  Vladimir Batagelj,et al.  An O(m) Algorithm for Cores Decomposition of Networks , 2003, ArXiv.