In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms.

[1]  L. Fraceto,et al.  Green nanomaterials fostering agrifood sustainability , 2020, TrAC Trends in Analytical Chemistry.

[2]  I. P. Oliveira,et al.  Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin , 2020 .

[3]  Chih-Hao Lu,et al.  Impact Assessment of heavy metal cations to the characteristics of photosynthetic phycocyanin. , 2020, Journal of hazardous materials.

[4]  B. Mennucci,et al.  Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. , 2020, Biochimica et biophysica acta. Bioenergetics.

[5]  Jacob L. Jones,et al.  Best practices from nano-risk analysis relevant for other emerging technologies , 2019, Nature Nanotechnology.

[6]  R. Grillo,et al.  How does aquatic macrophyte Salvinia auriculata respond to nanoceria upon an increased CO2 source? A Fourier transform-infrared photoacoustic spectroscopy and chlorophyll a fluorescence study. , 2019, Ecotoxicology and environmental safety.

[7]  F. Lipparini,et al.  Spectral Variability in Phycocyanin Cryptophyte Antenna Complexes is Controlled by Changes in the α‐Polypeptide Chains , 2019, ChemPhotoChem.

[8]  Xiu-juan Zhao,et al.  Study on physisorption between phycocyanin and gold nanoparticles. , 2019, Luminescence : the journal of biological and chemical luminescence.

[9]  H. Kalaji,et al.  Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants? , 2019, Current Plant Biology.

[10]  Leanne M. Gilbertson,et al.  Opportunities and challenges for nanotechnology in the agri-tech revolution , 2019, Nature Nanotechnology.

[11]  E. F. Santiago,et al.  LETTER TO THE EDITORThe energy flux theory celebrates 40 years: toward a systems biology concept? , 2019, Photosynthetica.

[12]  M. Mohammadikish,et al.  Synthesis and optical band gap determination of CuO nanoparticles from salen-based infinite coordination polymer nanospheres , 2019, Materials Research Express.

[13]  A. Kahru,et al.  Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. , 2019, The Science of the total environment.

[14]  Gustavo Maia Souza,et al.  Emergent Properties and Stability in Hierarchical Biosystems: There Is no Privileged Level of Causation , 2019, Emergence and Modularity in Life Sciences.

[15]  Lars H. Wegner,et al.  Modularity Versus Emergence: How to Cope with Complexity in Whole-Plant Physiology? , 2019, Emergence and Modularity in Life Sciences.

[16]  A. Fernie,et al.  Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network , 2018, Critical Reviews in Plant Sciences.

[17]  L. Fraceto,et al.  Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity , 2018, Scientific Reports.

[18]  Callie W. Babbitt,et al.  Sustainable nanomaterials by design , 2018, Nature Nanotechnology.

[19]  J. Gardea-Torresdey,et al.  Achieving food security through the very small , 2018, Nature Nanotechnology.

[20]  Leonardo F. Fraceto,et al.  Editorial: Environmental Impact of Nanotechnology: Analyzing the Present for Building the Future , 2018, Front. Environ. Sci..

[21]  M. Lagorio,et al.  Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts , 2018, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[22]  J. Peralta-Videa,et al.  Foliar Exposure of Cu(OH)2 Nanopesticide to Basil ( Ocimum basilicum): Variety-Dependent Copper Translocation and Biochemical Responses. , 2018, Journal of agricultural and food chemistry.

[23]  U. Raikar,et al.  Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities , 2018 .

[24]  K. Żuk-Gołaszewska,et al.  Chlorophyll Fluorescence: Understanding Crop Performance ― Basics and Applications , 2017 .

[25]  L. Fraceto,et al.  Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity , 2017, Scientific Reports.

[26]  Onur Can Türker,et al.  Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system. , 2017, Journal of hazardous materials.

[27]  Ozcan Konur,et al.  Scientometric overview in nanopesticides , 2017 .

[28]  A. Movafeghi,et al.  Toxicity of copper oxide nanoparticles on Spirodelapolyrrhiza: assessing physiological parameters , 2017, Research on Chemical Intermediates.

[29]  R. Sinha,et al.  Structural and functional dynamics of tyrosine amino acid in phycocyanin of hot-spring cyanobacteria: A possible pathway for internal energy transfer , 2016 .

[30]  Sandhya Mishra,et al.  C-Phycocyanin as a potential biosensor for heavy metals like Hg2+ in aquatic systems , 2016 .

[31]  T. Lawson,et al.  Quenching of chlorophyll fluorescence induced by silver nanoparticles. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[32]  A. Tahir,et al.  Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna , 2016, Nanomaterials.

[33]  Xiaoyu Liu,et al.  Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity , 2016, Nanotoxicology.

[34]  G. M. Souza,et al.  Toward a systemic plant physiology , 2016, Theoretical and Experimental Plant Physiology.

[35]  W. Lu,et al.  Piezoresistive effects enhanced the photocatalytic properties of Cu2O/CuO nanorods , 2015 .

[36]  A. Durand,et al.  Oxygen-dependent copper toxicity: targets in the chlorophyll biosynthesis pathway identified in the copper efflux ATPase CopA deficient mutant. , 2015, Environmental microbiology.

[37]  M. S. Akhtar,et al.  Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications , 2015 .

[38]  D. W. Dhar,et al.  Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540) , 2014, Indian Journal of Plant Physiology.

[39]  F. Perreault,et al.  Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L , 2014, Nanotoxicology.

[40]  F. Perreault,et al.  Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. , 2014, Environmental pollution.

[41]  Arturo A. Keller,et al.  Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local , 2014 .

[42]  Arturo A. Keller,et al.  Global life cycle releases of engineered nanomaterials , 2013, Journal of Nanoparticle Research.

[43]  V. Bagnato,et al.  In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles , 2011 .

[44]  R. Strasser,et al.  The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10 , 2011, Plant Biotechnology Reports.

[45]  J. Lipok,et al.  The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. , 2010, Ecotoxicology and environmental safety.

[46]  N. Khellaf,et al.  Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation , 2010, Ecotoxicology.

[47]  Govindjee,et al.  Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. , 2010, Biochimica et biophysica acta.

[48]  R. Renganathan,et al.  Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. , 2009, Journal of colloid and interface science.

[49]  R. Renganathan,et al.  Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[50]  A. Fisher,et al.  Structure of the biliverdin radical intermediate in phycocyanobilin:ferredoxin oxidoreductase identified by high-field EPR and DFT. , 2009, Journal of the American Chemical Society.

[51]  K. Kasemets,et al.  Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, The Science of the total environment.

[52]  R. Renganathan,et al.  Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[53]  F. Bellemare,et al.  Use of different fluorometric systems in the determination of fluorescence parameters from spinach thylakoid membranes being exposed to atrazine and copper , 2007 .

[54]  Alain Friboulet,et al.  Systems Biology-an interdisciplinary approach. , 2005, Biosensors & bioelectronics.

[55]  S. Hotchandani,et al.  Photoinduced electron transfer between chlorophyll a and gold nanoparticles. , 2005, The journal of physical chemistry. B.

[56]  Rajinder K. Gupta,et al.  Nanotechnology and Potential of Microorganisms , 2005, Critical reviews in biotechnology.

[57]  B. Strasser Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients , 1997, Photosynthesis Research.

[58]  R. Strasser,et al.  Analysis of the Chlorophyll a Fluorescence Transient , 2004 .

[59]  Tariq A. Akhtar,et al.  Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. , 2003, Plant & cell physiology.

[60]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[61]  G. N. Amzallag Data analysis in plant physiology: are we missing the reality? , 2001 .

[62]  A. Polle,et al.  Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. , 2001, Plant physiology.

[63]  M. Linder Introduction and Overview of Copper as an Element Essential for Life , 1991 .

[64]  B. Zarcinas,et al.  Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry , 1987 .

[65]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .

[66]  J. Bandekar,et al.  Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. , 1986, Advances in protein chemistry.

[67]  E. J. Ambrose,et al.  Structure of Synthetic Polypeptides , 1950, Nature.