Compact Models for Future Generation CMOS

Multiple-gate MOSFETs with superior short channel control are expected to replace planar CMOS in the near future. An accurate and computationally efficient compact transistor model is necessary to simulate circuits in multiple-gate MOSFET technologies. In this dissertation research, a compact multiple-gate MOSFET model, BSIM-MG is developed. BSIM-MG includes independent multi-gate compact model BSIM-IMG and common multi-gate compact model BSIM-CMG. We focus on BSIM-IMG for multiple-gate MOSFETs with independent front- and back-gates. The basic formulations for surface potential, drain current and charge are derived and verified against TCAD simulations with excellent agreements. The model preserves important property of multi-gate MOSFETs such as volume inversion. Non-ideal effects including short channel effects, length dependent back-gate coupling, transport models, leakage currents, parasitic resistances and capacitances, temperature effects and self heating are considered in the model. The model expressions are carefully formulated so that the symmetry of the source and drain is preserved. Rules for maintaining symmetry are discussed in this dissertation.For the common multi-gate transistor model BSIM-CMG, the basic expressions have been improved so that it is compatible with a novel non quasi-static effects modeling technique m charge segmentation. In addition, a parasitic source/drain resistance model is developed, including three components: the contact resistance, the spreading resistance, and the bias-dependent extension resistance. Both BSIM-CMG and BSIM-IMG models are verified against TCAD and measured data.The use of the FinFET compact model to model manufacturing variation in a FinFET technology is further explored. The model matches measured data well for both the nominal case and the statistical distribution for NMOS threshold voltage as well as the read static noise margin. A non-Gaussian threshold voltage distribution is observed for nFET devices, and the compact model successfully captures the distribution. We further outlined and demonstrated a Monte-Carlo based procedure for designing FinFET SRAM cells using the extracted variation information.Technology scaling has enabled numerous CMOS analog circuits for low cost radio-frequency applications. The modeling of MOSFET thermal noise becomes very important. In the final part of this dissertation research, a new thermal noise model is developed for the industry standard BSIM4 model that enhances the existing thermal noise formulation in BSIM4. The model is verified against a segmented channel MOSFET model as well as measured data. It is implemented in Berkeley SPICE3 and is ready for industry use. A method to port the model to BSIM-MG for thermal noise modeling in multi-gate MOSFETs is also presented.

[1]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[2]  Samel K. H. Fung,et al.  BSIMPD: a partial-depletion SOI MOSFET model for deep-submicron CMOS designs , 2000, Proceedings of the IEEE Custom Integrated Circuits Conference.

[3]  M. J. Deen,et al.  MOSFET modeling for low noise, RF circuit design , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[4]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[5]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[6]  Krishna C. Saraswat,et al.  Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs , 2003 .

[7]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[8]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[9]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[10]  Ronald van Langevelde,et al.  Compact modeling of noise in CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[11]  Mohan Vamsi Dunga,et al.  Nanoscale CMOS modeling , 2008 .

[12]  Chung-Hsun Lin,et al.  Compact Modeling of Nanoscale CMOS , 2007 .

[13]  Christian Piguet International Symposium on Low-Power Electronics and Design (ISLPED'02) Conference , 2004 .

[14]  Bing Wang,et al.  MOSFET thermal noise modeling for analog integrated circuits , 1994 .

[15]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[16]  R.W. Dutton,et al.  A charge-oriented model for MOS transistor capacitances , 1978, IEEE Journal of Solid-State Circuits.

[17]  A. Vandooren,et al.  CMOS Vertical Multiple Independent Gate Field Effect Transistor (MIGFET) , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[18]  A. Richard Newton,et al.  Analysis of performance and convergence issues for circuit simulation , 1989 .

[19]  L. H. Vanamurth,et al.  Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[20]  Ali M. Niknejad,et al.  Design of FinFET SRAM Cells Using a Statistical Compact Model , 2009, 2009 International Conference on Simulation of Semiconductor Processes and Devices.

[21]  Ali M. Niknejad,et al.  BSIM-CMG: A Compact Model for Multi-Gate Transistors , 2008 .

[22]  R. Havens,et al.  Noise modeling for RF CMOS circuit simulation , 2003 .

[23]  Zheng Guo,et al.  Large-scale read/write margin measurement in 45nm CMOS SRAM arrays , 2008, 2008 IEEE Symposium on VLSI Circuits.

[24]  Robert G. Meyer,et al.  Computationally efficient electronic-circuit noise calculations , 1971 .

[25]  Dimitri A. Antoniadis,et al.  Back-gated CMOS on SOIAS for dynamic threshold voltage control , 1997 .

[26]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[27]  G. O. Workman,et al.  A process/physics-based compact model for nonclassical CMOS device and circuit design , 2004 .

[28]  C M Olsen,et al.  LINFET: A BSIM class FET model with smooth derivatives at Vds=0 , 2007 .

[29]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[30]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[31]  Patrick O'Halloran,et al.  Compact modeling in Verilog-A , 2006 .

[32]  M. Chan,et al.  Gate resistance modeling of multifin MOS devices , 2006, IEEE Electron Device Letters.

[33]  F. M. Klaassen,et al.  Thermal noise of MOS transistors , 1967 .

[34]  G. Dewey,et al.  Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[35]  E. Vittoz,et al.  Charge-Based MOS Transistor Modeling , 2006 .

[36]  Ali M. Niknejad,et al.  Charge-based core and the model architecture of BSIM5 , 2005, Sixth international symposium on quality electronic design (isqed'05).

[37]  C. Hu,et al.  Threshold voltage model for deep-submicrometer MOSFETs , 1993 .

[38]  C. Hu,et al.  Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling , 2001 .

[39]  M. Miura-Mattausch,et al.  Completely Surface-Potential-Based Compact Model of the Fully Depleted SOI-MOSFET Including Short-Channel Effects , 2006, IEEE Transactions on Electron Devices.

[40]  Chung-Hsun Lin,et al.  A Multi-Gate MOSFET Compact Model Featuring Independent-Gate Operation , 2007, 2007 IEEE International Electron Devices Meeting.

[41]  Yuhua Cheng,et al.  MOSFET Modeling and Bsim3 User's Guide , 1999 .

[42]  Ying Zhang,et al.  Extension and source/drain design for high-performance FinFET devices , 2003 .

[43]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[44]  R. Dutton,et al.  Transient analysis of MOS transistors , 1980, IEEE Transactions on Electron Devices.

[45]  L. T. Su,et al.  Deep-submicrometer channel design in silicon-on-insulator (SOI) MOSFET's , 1994, IEEE Electron Device Letters.

[46]  F. Maloberti The MOS Transistor , 2003 .

[47]  V. Trivedi,et al.  Nanoscale FinFETs with gate-source/drain underlap , 2005, IEEE Transactions on Electron Devices.

[48]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[49]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[50]  C. C. McAndrew,et al.  An improved MOSFET model for circuit simulation , 1998 .

[51]  G. Gildenblat,et al.  Analytical approximation for the MOSFET surface potential , 2001 .

[52]  Gate Arrays CUSTOM INTEGRATED CIRCUITS CONFERENCE , 1985 .

[53]  M. Ieong,et al.  Modeling line edge roughness effects in sub 100 nanometer gate length devices , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[54]  W. Haensch,et al.  Demonstration of highly scaled FinFET SRAM cells with high-κ/metal gate and investigation of characteristic variability for the 32 nm node and beyond , 2008, 2008 IEEE International Electron Devices Meeting.

[55]  T.-J.K. Liu,et al.  Three-Dimensional FinFET Source/Drain and Contact Design Optimization Study , 2009, IEEE Transactions on Electron Devices.

[56]  M. Silberstein,et al.  A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors , 2003, IEEE International Electron Devices Meeting 2003.

[57]  C. Hu,et al.  Modeling the floating-body effects of fully depleted, partially depleted, and body-grounded SOI MOSFETs , 2004 .

[58]  Chenming Hu,et al.  35nm CMOS FinFETs , 2002 .

[59]  A.J. Scholten,et al.  Generalizations of the Klaassen-Prins equation for calculating the noise of semiconductor devices , 2005, IEEE Transactions on Electron Devices.

[60]  Jung-Suk Goo,et al.  High frequency noise in CMOS low noise amplifiers , 2001 .

[61]  Chenming Calvin Hu,et al.  Modern Semiconductor Devices for Integrated Circuits , 2009 .

[62]  M. Ieong,et al.  Investigation of FinFET Devices for 32nm Technologies and Beyond , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[63]  Yuan Taur,et al.  An analytic potential model for symmetric and asymmetric DG MOSFETs , 2006 .

[64]  William Liu,et al.  MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4 , 2001 .

[65]  Chenming Hu,et al.  Modeling Advanced FET Technology in a Compact Model , 2006, IEEE Transactions on Electron Devices.

[66]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[67]  S. Samavedam,et al.  Modeling and Analysis of Parasitic Resistance in Double-Gate FinFETs , 2009, IEEE Transactions on Electron Devices.

[68]  C. Pacha,et al.  Layout options for stability tuning of SRAM cells in multi-gate-FET technologies , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[69]  Ali M. Niknejad,et al.  Compact Modeling of Variation in FinFET SRAM Cells , 2010, IEEE Design & Test of Computers.

[70]  V. Trivedi,et al.  Source/drain-doping engineering for optimal nanoscale FinFET design , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[71]  G. Pei,et al.  A physical compact model of DG MOSFET for mixed-signal circuit applications- part I: model description , 2003 .

[72]  Horst H. Berger,et al.  Models for contacts to planar devices , 1972 .

[73]  Chenming Hu,et al.  Performance-Aware Corner Model for Design for Manufacturing , 2009, IEEE Transactions on Electron Devices.

[74]  Yukihito Kondo,et al.  Suspended Gold Nanowires: Ballistic Transport of Electrons , 2001 .

[75]  C. Vrancken,et al.  Systematic TLM Measurements of NiSi and PtSi Specific Contact Resistance to n- and p-Type Si in a Broad Doping Range , 2008, IEEE Electron Device Letters.

[76]  D. Fried,et al.  High-performance p-type independent-gate FinFETs , 2004, IEEE Electron Device Letters.

[77]  Yuan Taur,et al.  Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs , 2001 .

[78]  Bing J. Sheu,et al.  BSIM: Berkeley short-channel IGFET model for MOS transistors , 1987 .

[79]  Hyungcheol Shin,et al.  Analytical Thermal Noise Model of Deep-submicron MOSFETs , 2006 .

[80]  A. Ziel Gate noise in field effect transistors at moderately high frequencies , 1963 .

[81]  Fabrizio Bonani,et al.  Green's function approach to MOS physics-based compact noise modelling , 2001 .

[82]  M. Deen,et al.  Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements , 2001 .

[83]  C. Sah,et al.  The effects of fixed bulk charge on the characteristics of metal-oxide-semiconductor transistors , 1966 .

[84]  C. Hu,et al.  High-field transport of inversion-layer electrons and holes including velocity overshoot , 1997 .

[85]  Colin C. McAndrew,et al.  Correlated Noise Modeling and Simulation , 2005 .

[86]  A.S. Roy,et al.  A closed-form charge-based expression for drain current in symmetric and asymmetric double gate MOSFET , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[87]  Hiroyuki Yamauchi A Scaling Trend of Variation-Tolerant SRAM Circuit Design in Deeper Nanometer Era , 2009 .

[88]  D. Frank,et al.  Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[89]  Ali M. Niknejad,et al.  Multi-Gate MOSFET Compact Model BSIM-MG , 2010 .

[90]  Kok Wai Wong,et al.  Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation , 2002, Digest. International Electron Devices Meeting,.

[91]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[92]  Alper Demir,et al.  Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems , 1997 .

[93]  F.J. Garcia Sanchez,et al.  Drain Current and Transconductance Model for the Undoped Body Asymmetric Double-Gate MOSFET , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[94]  E. Cumberbatch,et al.  Compact Models for Asymmetric Double Gate MOSFETs , 2007 .

[95]  Yuan Taur,et al.  Explicit Continuous Models for Double-Gate and Surrounding-Gate MOSFETs , 2007, IEEE Transactions on Electron Devices.

[96]  R. Rooyackers,et al.  A Low-Power Multi-Gate FET CMOS Technology with 13.9ps Inverter Delay, Large-Scale Integrated High Performance Digital Circuits and SRAM , 2007, 2007 IEEE Symposium on VLSI Technology.

[97]  J. Brews A charge-sheet model of the MOSFET , 1978 .

[98]  Robert W. Dutton,et al.  The equivalence of van der Ziel and BSIM4 models in modeling the induced gate noise of MOSFETs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[99]  C. Hu,et al.  BSIM-MG: A Versatile Multi-Gate FET Model for Mixed-Signal Design , 2007, 2007 IEEE Symposium on VLSI Technology.

[100]  H. Ishiuchi,et al.  Embedded Bulk FinFET SRAM Cell Technology with Planar FET Peripheral Circuit for hp32 nm Node and Beyond , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[101]  Jean-Pierre Colinge,et al.  FinFETs and Other Multi-Gate Transistors , 2007 .

[102]  Thierry Poiroux,et al.  Continuous model for independent double gate MOSFET , 2009 .

[103]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[104]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..