Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in

[1]  G. Carmichael,et al.  Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems. , 2019, Molecular cell.

[2]  Yang Wang,et al.  Cellular functions of long noncoding RNAs , 2019, Nature Cell Biology.

[3]  M. Cao,et al.  Genome-wide methods for investigating long noncoding RNAs. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[4]  H. Park,et al.  MS2 Labeling of Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates , 2019, Molecules and cells.

[5]  J. Spille,et al.  A CRISPR/Cas9 platform for MS2-labelling of single mRNA in live stem cells. , 2019, Methods.

[6]  Y. Huang,et al.  TOE1 acts as a 3′ exonuclease for telomerase RNA and regulates telomere maintenance , 2018, Nucleic acids research.

[7]  Jongchan Kim,et al.  Long noncoding RNA , 2019 .

[8]  M. Gorospe,et al.  Intracellular RNA-tracking methods , 2018, Royal Society Open Biology.

[9]  Ling-Ling Chen,et al.  Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria , 2018, Nature Cell Biology.

[10]  R. Singer,et al.  Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system , 2018, Nature Protocols.

[11]  E. Lander,et al.  The NORAD lncRNA assembles a topoisomerase complex critical for genome stability , 2018, Nature.

[12]  J. Carette,et al.  RNA–protein interaction detection in living cells , 2018, Nature Methods.

[13]  J. Mendell,et al.  Functional Classification and Experimental Dissection of Long Noncoding RNAs , 2018, Cell.

[14]  C. Bond,et al.  Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. , 2017, Trends in biochemical sciences.

[15]  R. Parker,et al.  An improved MS2 system for accurate reporting of the mRNA life cycle , 2017, Nature Methods.

[16]  Max J. Kellner,et al.  RNA editing with CRISPR-Cas13 , 2017, Science.

[17]  Maite Huarte,et al.  The multidimensional mechanisms of long noncoding RNA function , 2017, Genome Biology.

[18]  H. Krause,et al.  The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. , 2017, Trends in genetics : TIG.

[19]  Huimin Zhao,et al.  CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci , 2017, bioRxiv.

[20]  T. Takumi,et al.  Unusual semi‐extractability as a hallmark of nuclear body‐associated architectural noncoding RNAs , 2017, The EMBO journal.

[21]  Ling-Ling Chen,et al.  SLERT Regulates DDX21 Rings Associated with Pol I Transcription , 2017, Cell.

[22]  Mustafa Mir,et al.  Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9 , 2017, Nature Communications.

[23]  Marten Postma,et al.  mScarlet: a bright monomeric red fluorescent protein for cellular imaging , 2016, Nature Methods.

[24]  Jinhua Lu,et al.  NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription , 2016, Cellular and Molecular Life Sciences.

[25]  Jinhua Lu,et al.  NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription , 2016, Cellular and Molecular Life Sciences.

[26]  R. Kingston,et al.  Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization , 2016, The Journal of cell biology.

[27]  Ling-Ling Chen,et al.  Shedding light on paraspeckle structure by super-resolution microscopy , 2016, The Journal of cell biology.

[28]  Ling-Ling Chen Linking Long Noncoding RNA Localization and Function. , 2016, Trends in biochemical sciences.

[29]  A. Chinnaiyan,et al.  The bright side of dark matter: lncRNAs in cancer. , 2016, The Journal of clinical investigation.

[30]  Ferran Reverter,et al.  Discovery of Cancer Driver Long Noncoding RNAs across 1112 Tumour Genomes: New Candidates and Distinguishing Features , 2016, Scientific Reports.

[31]  C. Bond,et al.  The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold , 2016, Nucleic acids research.

[32]  Keith A. Boroevich,et al.  Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer , 2016, Nature Genetics.

[33]  Jennifer A. Doudna,et al.  Programmable RNA Tracking in Live Cells with CRISPR/Cas9 , 2016, Cell.

[34]  Wensheng Wei,et al.  Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system , 2016, Nucleic acids research.

[35]  N. Mermod,et al.  Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms , 2015, Nucleic acids research.

[36]  Hongliang Zhu,et al.  Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein , 2015, Cell & Bioscience.

[37]  Juanjuan Zhu,et al.  Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry , 2015, Applied Biochemistry and Biotechnology.

[38]  C. Bond,et al.  The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation , 2015, Nucleic acids research.

[39]  Shinichi Nakagawa,et al.  The long noncoding RNA Neat1 is required for mammary gland development and lactation , 2014, RNA.

[40]  Eiki Takahashi,et al.  The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice , 2014, Development.

[41]  Tetsushi Sakuma,et al.  Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9 , 2014, Nature Communications.

[42]  Michael Y Tolstorukov,et al.  The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. , 2014, Molecular cell.

[43]  Sangsu Bae,et al.  Microhomology-based choice of Cas9 nuclease target sites , 2014, Nature Methods.

[44]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[45]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[46]  Yutaka Suzuki,et al.  Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. , 2014, Molecular cell.

[47]  Hye Yoon Park,et al.  Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse , 2014, Science.

[48]  Takahide Yokoi,et al.  NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies , 2014, Molecular biology of the cell.

[49]  C. Troakes,et al.  Compromised paraspeckle formation as a pathogenic factor in FUSopathies , 2013, Human molecular genetics.

[50]  Hooshang Nikjoo,et al.  Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. , 2013, Mutation research.

[51]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[52]  K. Jeang,et al.  NEAT1 Long Noncoding RNA and Paraspeckle Bodies Modulate HIV-1 Posttranscriptional Expression , 2013, mBio.

[53]  N. Goshima,et al.  Alternative 3′‐end processing of long noncoding RNA initiates construction of nuclear paraspeckles , 2012, The EMBO journal.

[54]  Bin Wu,et al.  Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. , 2012, Biophysical journal.

[55]  T. Derrien,et al.  The Long Non-Coding RNAs: A New (P)layer in the “Dark Matter” , 2012, Front. Gene..

[56]  Lan Huang,et al.  Quantitative Profiling of In Vivo-assembled RNA-Protein Complexes Using a Novel Integrated Proteomic Approach* , 2011, Molecular & Cellular Proteomics.

[57]  Lynn Farh,et al.  Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide , 2011, Science.

[58]  A. Oudenaarden,et al.  Validating transcripts with probes and imaging technology , 2011, Nature Methods.

[59]  Hye Yoon Park,et al.  A transgenic mouse for in vivo detection of endogenous labeled mRNA , 2010, Nature Methods.

[60]  Dan Liu,et al.  Genome-wide YFP Fluorescence Complementation Screen Identifies New Regulators for Telomere Signaling in Human Cells* , 2010, Molecular & Cellular Proteomics.

[61]  Yolanda Santiago,et al.  Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology , 2010, Nucleic acids research.

[62]  G. Carmichael,et al.  Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. , 2009, Molecular cell.

[63]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[64]  L. Deriano,et al.  Chronic exposure to sublethal doses of radiation mimetic Zeocin selects for clones deficient in homologous recombination. , 2007, Mutation research.

[65]  John N. Hutchinson,et al.  A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains , 2007, BMC Genomics.

[66]  N. Sugimoto,et al.  A Novel Stable RNA Pentaloop that Interacts Specifically with A Motif Peptide of Lambda-N Protein , 2006, Nucleosides, nucleotides & nucleic acids.

[67]  A. Lamond,et al.  P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. , 2005, Molecular biology of the cell.

[68]  Robert H. Singer,et al.  Fluorescence in situ hybridization: past, present and future , 2003, Journal of Cell Science.

[69]  Robert H. Singer,et al.  Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells , 2003, Current Biology.

[70]  Matthias Mann,et al.  Paraspeckles A Novel Nuclear Domain , 2002, Current Biology.

[71]  Tamás Kiss,et al.  7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes , 2001, Nature.

[72]  Gregg B. Morin,et al.  Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT , 1997, Nature Genetics.

[73]  H. M. Sobell Actinomycin and DNA transcription. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Smith,et al.  Effects of actinomycin D on cell cycle kinetics and the DNA of Chinese hamster and mouse mammary tumor cells cultivated in vitro. , 1976, Cancer research.

[75]  R. Roeder,et al.  Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Perry,et al.  Inhibition of RNA synthesis by actinomycin D: Characteristic dose‐response of different RNA species , 1970, Journal of cellular physiology.