Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

We demonstrate THz intersubband absorption (15.6–26.1 meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14 meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a ∼40% reduction in the linewidth (from roughly 8 to 5 meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

[1]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[2]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[3]  F. Julien,et al.  Terahertz intersubband absorption in GaN/AlGaN step quantum wells , 2010 .

[4]  Deborah L. Sivco,et al.  Near-infrared intersubband absorption in molecular-beam epitaxy-grown lattice-matched InAlN/GaN superlattices , 2009 .

[5]  H. Liu,et al.  Semiconductors and semimetals : intersubband transitions in quantum wells physics and device applications , 1999 .

[6]  Esther Baumann,et al.  GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance , 2008 .

[7]  Wei Zhang,et al.  Far-infrared intersubband photodetectors based on double-step III-nitride quantum wells , 2012 .

[8]  M. Załużny,et al.  Coupling of infrared radiation to intersubband transitions in multiple quantum wells: The effective-medium approach , 1999 .

[9]  M. Stroscio,et al.  Photon absorption in the Restrahlen band of thin films of GaN and AlN: Two phonon effects , 2005 .

[10]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[11]  Liang Tang,et al.  Surface morphology evolution of m-plane (11¯00) GaN during molecular beam epitaxy growth: Impact of Ga/N ratio, miscut direction, and growth temperature , 2013 .

[12]  Shuji Nakamura,et al.  Non-polar m-plane intersubband based InGaN/(Al)GaN quantum well infrared photodetectors , 2013 .

[13]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[14]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[15]  F. Julien,et al.  Intersubband absorption of cubic GaN/Al(Ga)N quantum wells in the near-infrared to terahertz spectral range , 2011 .

[16]  Wataru Terashima,et al.  Spontaneous emission from GaN/AlGaN terahertz quantum cascade laser grown on GaN substrate , 2011 .

[17]  B. Williams,et al.  Terahertz quantum cascade lasers with double-resonant-phonon depopulation , 2006 .

[18]  Liang Tang,et al.  Improvement of near-infrared absorption linewidth in AlGaN/GaN superlattices by optimization of delta-doping location , 2012 .

[19]  Liang Tang,et al.  Comparative study of intersubband absorption in AlGaN/GaN and AlInN/GaN superlattices: Impact of material inhomogeneities , 2013 .

[20]  M. Helm,et al.  Chapter 1 The Basic Physics of Intersubband Transitions , 1999 .

[21]  Wu Tian,et al.  Terahertz intersubband transition in GaN/AlGaN step quantum well , 2013 .

[22]  F. Julien,et al.  Effect of doping on the mid-infrared intersubband absorption in GaN/AlGaN superlattices grown on Si(111) templates , 2010 .

[23]  E. Monroy,et al.  Terahertz absorbing AlGaN/GaN multi-quantum-wells: Demonstration of a robust 4-layer design , 2013 .

[24]  Dmitri N. Zakharov,et al.  Homogeneous AlGaN/GaN superlattices grown on free-standing (11¯00) GaN substrates by plasma-assisted molecular beam epitaxy , 2013 .

[25]  F. Julien,et al.  Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells , 2006 .

[26]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .