Reversible arithmetic coding for quantum data compression
暂无分享,去创建一个
[1] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[2] N. Gisin,et al. Quantum cryptography , 1998 .
[3] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[4] N. Sloane,et al. Quantum Error Correction Via Codes Over GF , 1998 .
[5] Richard Clark Pasco,et al. Source coding algorithms for fast data compression , 1976 .
[6] RieffelEleanor,et al. An introduction to quantum computing for non-physicists , 2000 .
[7] Eleanor G. Rieffel,et al. J an 2 00 0 An Introduction to Quantum Computing for Non-Physicists , 2002 .
[8] Charles H. Bennett. Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..
[9] Schumacher,et al. Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[10] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[11] D. Dieks. Communication by EPR devices , 1982 .
[12] Samuel L. Braunstein,et al. A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.
[13] Jorma Rissanen,et al. Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..
[14] Chuang,et al. Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[15] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[16] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[17] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[18] Physical Review , 1965, Nature.
[19] Cleve,et al. Schumacher's quantum data compression as a quantum computation. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[20] Preskill,et al. Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[21] Chau,et al. Simple realization of the Fredkin gate using a series of two-body operators. , 1995, Physical review letters.
[22] Thomas F. Knight,et al. Non-dissipative rail drivers for adiabatic circuits , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.
[23] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[24] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[25] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[26] J. Pieter M. Schalkwijk,et al. An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.
[27] A. Barenco. A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[28] Glen G. Langdon,et al. Arithmetic Coding , 1979 .
[29] C. Fuchs. Nonorthogonal Quantum States Maximize Classical Information Capacity , 1997, quant-ph/9703043.
[30] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[31] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[32] Glen G. Langdon,et al. An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..
[33] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[34] N. Fisher,et al. Probability Inequalities for Sums of Bounded Random Variables , 1994 .
[35] J. A. Crowther. Reports on Progress in Physics , 1941, Nature.
[36] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[37] H. S. Allen. The Quantum Theory , 1928, Nature.
[38] Thomas M. Cover,et al. Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.