Reversible arithmetic coding for quantum data compression

We study the problem of compressing a block of symbols (a block quantum state) emitted by a memoryless quantum Bernoulli source. We present a simple-to-implement quantum algorithm for projecting, with high probability, the block quantum state onto the typical subspace spanned by the lending eigenstates of its density matrix. We propose a fixed-rate quantum Shannon-Fano code to compress the projected block quantum state using a per-symbol code rate that is slightly higher than the von Neumann (1955) entropy limit. Finally, we propose quantum arithmetic codes to efficiently implement quantum Shannon-Fano (1948) codes. Our arithmetic encoder and decoder have a cubic circuit and a cubic computational complexity in the block size. Both the encoder and decoder are quantum-mechanical inverses of each other, and constitute an elegant example of reversible quantum computation.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  N. Gisin,et al.  Quantum cryptography , 1998 .

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[5]  Richard Clark Pasco,et al.  Source coding algorithms for fast data compression , 1976 .

[6]  RieffelEleanor,et al.  An introduction to quantum computing for non-physicists , 2000 .

[7]  Eleanor G. Rieffel,et al.  J an 2 00 0 An Introduction to Quantum Computing for Non-Physicists , 2002 .

[8]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[9]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[11]  D. Dieks Communication by EPR devices , 1982 .

[12]  Samuel L. Braunstein,et al.  A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.

[13]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[14]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[16]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[18]  Physical Review , 1965, Nature.

[19]  Cleve,et al.  Schumacher's quantum data compression as a quantum computation. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Chau,et al.  Simple realization of the Fredkin gate using a series of two-body operators. , 1995, Physical review letters.

[22]  Thomas F. Knight,et al.  Non-dissipative rail drivers for adiabatic circuits , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[25]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[26]  J. Pieter M. Schalkwijk,et al.  An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.

[27]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  Glen G. Langdon,et al.  Arithmetic Coding , 1979 .

[29]  C. Fuchs Nonorthogonal Quantum States Maximize Classical Information Capacity , 1997, quant-ph/9703043.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[32]  Glen G. Langdon,et al.  An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..

[33]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[34]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[35]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[36]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[37]  H. S. Allen The Quantum Theory , 1928, Nature.

[38]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.