Abstract:Determining precisely the atomic structure of single-wall carbon nanotubes is essential since it tailors electronic properties of this new carbon material. Here, we present a quantitative electron diffraction study of electric-arc produced single-wall carbon nanotube bundles, combined with simulations based on the kinematic theory and with real-space images. We stress the importance of the twist of the bundle in the interpretation of our data and we analyze both packing lattice parameters and chirality distribution. We show that, within a given bundle, no chirality is favoured whereas SWNT diameters are almost uniform.