High resolution retrieval of leaf chlorophyll content over Himalayan pine forest using Visible/IR sensors mounted on UAV and radiative transfer model

[1]  H. Fang,et al.  Determination of the Leaf Inclination Angle (LIA) through Field and Remote Sensing Methods: Current Status and Future Prospects , 2023, Remote. Sens..

[2]  M. Pal,et al.  Cloud Detection using Sentinel 2 Imageries: A comparison of XGBoost, RF, SVM and CNN algorithms , 2022, Geocarto International.

[3]  Guijun Yang,et al.  Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery , 2022, Comput. Electron. Agric..

[4]  Lunche Wang,et al.  Leaf pigment retrieval using the PROSAIL model: influence of uncertainty in prior canopy-structure information , 2022, The Crop Journal.

[5]  O. Muller,et al.  Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy , 2022, Remote. Sens..

[6]  P. Srivastava,et al.  Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms , 2022, Comput. Electron. Agric..

[7]  Chufeng Wang,et al.  Retrieval of rapeseed leaf area index using the PROSAIL model with canopy coverage derived from UAV images as a correction parameter , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[8]  A. Anand,et al.  Development of hyperspectral indices for anti-cancerous Taxol content estimation in the Himalayan region , 2021, Geocarto International.

[9]  Thomas Udelhoven,et al.  Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging , 2021, Remote. Sens..

[10]  Ramandeep Kaur M. Malhi,et al.  Denoising AVIRIS-NG Data for Generation of New Chlorophyll Indices , 2021, IEEE Sensors Journal.

[11]  S. Schmidtlein,et al.  The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology , 2021 .

[12]  Huichun Ye,et al.  Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data , 2020, Remote. Sens..

[13]  Liangyun Liu,et al.  Retrieving Crop Leaf Chlorophyll Content Using an Improved Look-Up-Table Approach by Combining Multiple Canopy Structures and Soil Backgrounds , 2020, Remote. Sens..

[14]  Jinfei Wang,et al.  Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn , 2020, Remote. Sens..

[15]  Hitendra Padalia,et al.  Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[16]  Huaguo Huang,et al.  Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar , 2019, Remote. Sens..

[17]  Yang Li,et al.  Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs , 2019, Remote. Sens..

[18]  Frédéric Baret,et al.  Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops , 2019, Remote Sensing of Environment.

[19]  A. B. M. Shawkat Ali,et al.  A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat , 2019, Remote. Sens..

[20]  Henning Buddenbaum,et al.  Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems , 2019, Surveys in Geophysics.

[21]  Gustau Camps-Valls,et al.  Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods , 2018, Surveys in Geophysics.

[22]  Wolfram Mauser,et al.  Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study , 2018, Remote. Sens..

[23]  Neus Sabater,et al.  Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis , 2016, Remote. Sens..

[24]  Yong Liu,et al.  Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[25]  J. Féret,et al.  A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy , 2016 .

[26]  C. Felby,et al.  Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme , 2016, Nature Communications.

[27]  Pablo J. Zarco-Tejada,et al.  Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping , 2015, Remote. Sens..

[28]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[29]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[30]  Beatriz Fernández-Marín,et al.  Opening Pandora's box: cause and impact of errors on plant pigment studies , 2015, Front. Plant Sci..

[31]  José F. Moreno,et al.  Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model , 2013, Remote. Sens..

[32]  Peter R. J. North,et al.  Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods , 2013, Remote. Sens..

[33]  Craig S. T. Daughtry,et al.  Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices , 2013 .

[34]  Lammert Kooistra,et al.  Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data , 2012, Remote. Sens..

[35]  Roshanak Darvishzadeh,et al.  Inversion of a Radiative Transfer Model for Estimation of Rice Canopy Chlorophyll Content Using a Lookup-Table Approach , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[37]  Clement Atzberger,et al.  Evaluation of Sentinel-2 Spectral Sampling for Radiative Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Michael K. Danquah,et al.  Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects , 2010 .

[39]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[40]  Zhang Tianyi LEAF AREA INDEX PETRIEVAL BASED ON REMOTELY SENSED DATA AND PROSPECT+SAIL MODEL , 2009 .

[41]  Jing M. Chen,et al.  Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery , 2008 .

[42]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[43]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[44]  J. Hill,et al.  Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics , 2005 .

[45]  Kenneth R. Richards,et al.  A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research , 2004 .

[46]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[47]  F. López‐Serrano,et al.  LAI estimation of natural pine forest using a non-standard sampling technique , 2000 .

[48]  V. Demarez,et al.  A Modeling Approach for Studying Forest Chlorophyll Content , 2000 .

[49]  Ranga B. Myneni,et al.  Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies , 1998 .

[50]  Gregory P. Asner,et al.  Ecological Research Needs from Multiangle Remote Sensing Data , 1998 .

[51]  F. Baret,et al.  Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .

[52]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[53]  John R. Miller,et al.  Comparative Relationships between Some Red Edge Parameters and Seasonal Leaf Chlorophyll Concentrations , 1995 .

[54]  Frédéric Baret,et al.  Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties , 1994 .

[55]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[56]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[57]  Prashant K. Srivastava,et al.  Statistical Unfolding Approach to Understand Influencing Factors for Taxol Content Variation in High Altitude Himalayan Region , 2021 .

[58]  J. Kumhálová,et al.  Comparing RGB - based vegetation indices from UAV imageries to estimate hops canopy area , 2020 .

[59]  Wolfram Mauser,et al.  Remote Sens , 2015 .

[60]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Peter R. J. North,et al.  Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria , 2013 .

[62]  M. Dalponte,et al.  Remote Sensing of Environment , 2022 .

[63]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[64]  P. G. Jarvis,et al.  Canopy Structure and Leaf Area Index in a Mature Scots Pine Forest , 1982 .