Perovskite Solar Cells: The Birth of a New Era in Photovoltaics

One of the most exciting developments in photovoltaics over recent years has been the emergence of organic–inorganic lead halide perovskites as a promising new material for low-cost, high-efficiency photovoltaics. In record time, confirmed laboratory energy conversion efficiencies have increased from a few percent to over 22%. Although there remains uncertainty as to whether materials with the required stability can be found within the associated material system and whether the presence of Pb in highly soluble form will limit commercial application, it is certain that these perovskite cells will remain the focus of concerted research efforts over the coming decade. The early history of the development of this technology leading to the first perovskite cells is documented as are significant recent developments.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[3]  K. Catchpole,et al.  Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites , 2016 .

[4]  Takenari Goto,et al.  Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4 , 1989 .

[5]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[6]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[7]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[8]  Seigo Ito,et al.  Research Update: Overview of progress about efficiency and stability on perovskite solar cells , 2016 .

[9]  Q. Gong,et al.  Inverted Perovskite Solar Cells: Progresses and Perspectives , 2016 .

[10]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[11]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[12]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[13]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[14]  M. Green,et al.  Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[15]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[16]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[17]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[18]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[19]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[20]  M. Nazeeruddin In retrospect: Twenty-five years of low-cost solar cells , 2016, Nature.

[21]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[22]  Martin A. Green,et al.  Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[23]  Tetsuo Tsutsui,et al.  Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 , 1994 .

[24]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[25]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[26]  Xiaofan Deng,et al.  High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching , 2017 .

[27]  Hao Li,et al.  CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.

[28]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[29]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[30]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[31]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[32]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[33]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[34]  D. J. Lagouvardos,et al.  Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3) PbI3, and similar compounds , 1993 .

[35]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[36]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[37]  J. Noh,et al.  Rational Strategies for Efficient Perovskite Solar Cells. , 2016, Accounts of chemical research.

[38]  H. L. Wells Über die Cäsium‐ und Kalium‐Bleihalogenide , 1893 .

[39]  Martin A. Green,et al.  Corrigendum to ‘Solar cell efficiency tables (version 49)’[Prog. Photovolt: Res. Appl. 2017; 25:3–13] , 2017 .

[40]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[41]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[42]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[43]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[44]  Dirk Jordan,et al.  Photovoltaic failure and degradation modes , 2017 .

[45]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[46]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[47]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[48]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[49]  Evaluation of damp‐heat testing of photovoltaic modules , 2017 .

[50]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .