General function spaces, products and continuous lattices
暂无分享,去创建一个
[1] Peter I. Booth,et al. Monoidal closed, Cartesian closed and convenient categories of topological spaces , 1980 .
[2] John W. Gray,et al. Mathematical applications of category theory , 1984 .
[3] L. Lewis. Open maps, colimits, and a convenient category of fibre spaces , 1985 .
[4] R. Arens,et al. A Topology for Spaces of Transformations , 1946 .
[5] Jimmie D. Lawson,et al. The spectral theory of distributive continuous lattices , 1978 .
[6] Ioan Mackenzie James,et al. General topology and homotopy theory , 1984 .
[7] On a ‘good’ dense class of topological spaces , 1986 .
[8] Rudolf E. Hoffmann. Continuous Lattices and Their Applications , 1985 .
[9] André Joyal,et al. Continuous categories and exponentiable toposes , 1982 .
[10] J. M. E. Hyland,et al. Function spaces in the category of locales , 1981 .
[11] L. D. Nel. CARTESIAN CLOSED COREFLECTIVE HULLS , 1977 .
[12] R. Brown,et al. FUNCTION SPACES AND PRODUCT TOPOLOGIES , 1964 .
[13] J. W. LeaJr.. Continuous lattices and compact Lawson semilattices , 1976 .
[14] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[15] G. M. Kelly,et al. On topological quotient maps preserved by pullbacks or products , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] S. Niefield. Cartesian inclusion: locales and topgses ∗ , 1981 .
[17] Brian Day,et al. A reflection theorem for closed categories , 1972 .
[18] Alan Day. Filter monads, continuous lattices and closure systems , 1975 .
[19] F. Schwarz. POWERS AND EXPONENTIAL OBJECTS IN INITIALLY STRUCTURED CATEGORIES AND APPLICATIONS TO CATEGORIES OF LIMIT SPACES , 1983 .
[20] Closed structures on categories of topological spaces , 1985 .
[21] J. Lawson. Topological Semilattices with Small Semilattices , 1969 .
[22] John R. Isbell,et al. Atomless Parts of Spaces. , 1972 .
[23] S. Niefield,et al. Cartesianness: topological spaces, uniform spaces, and affine schemes , 1982 .
[24] J. Lawson. Lattices with no interval homomorphisms. , 1970 .
[25] J. M. G. Fell,et al. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space , 1962 .
[26] H. Fischer,et al. On equicontinuity and continuous convergence , 1965 .
[27] N. Steenrod,et al. A convenient category of topological spaces. , 1967 .
[28] R. Fox,et al. On topologies for function spaces , 1945 .
[29] J. Dugundji,et al. Topologies for function spaces , 1951 .
[30] George Markowsky. A motivation and generalization of scott's notion of a continuous lattice , 1981 .
[31] John R. Isbell,et al. Function spaces and adjoints. , 1975 .
[32] Joseph E. Stoy,et al. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .
[33] N. Steenrod,et al. Foundations of Algebraic Topology , 1952 .
[34] J. D. Lawson,et al. Generalized continuous and hypercontinuous lattices , 1981 .
[35] L. Vietoris,et al. Bereiche zweiter Ordnung , 1922 .
[36] E. Michael,et al. Bi-quotient maps and cartesian products of quotient maps , 1968 .