Chapter 18 – High-Resolution Fiber and Fiber Tract Imaging Using Polarized Light Microscopy in the Human, Monkey, Rat, and Mouse Brain

Polarized light imaging (PLI) enables ultra-high resolution visualization of nerve fibers in postmortem brains by the birefringent property of myelin. Using the Jones calculus, 3D orientation of fibers can be determined in serial sections throughout the brain. We present examples of fiber architecture with an unprecedented spatial resolution both in the white matter and within the cerebral cortex of human, vervet monkey, and rodent brains. Crossing of fibers can be directly visualized without any assumptions or modeling, and fibers can be followed from the white matter into the most superficial layers of the cortex. Even extremely small fiber tracts are visible. Furthermore, the fiber architecture within the cerebral cortex provides a new approach for its parcellation into areas with distinct distribution, orientation, and density patterns of nerve fibers. PLI also provides the anatomical ground truth for the evaluation of results derived from diffusion weighted imaging.

[1]  Katrin Amunts,et al.  Polarized light imaging of the human brain: a new approach to the data analysis of tilted sections , 2014, Sensing Technologies + Applications.

[2]  M. Wolman Polarized light microscopy as a tool of diagnostic pathology. , 1975, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[3]  H. Axer,et al.  Visualization of nerve fiber orientation in gross histological sections of the human brain , 2000, Microscopy research and technique.

[4]  Jan Jantzen,et al.  The application of fuzzy-based methods to central nerve fiber imaging , 2003, Artif. Intell. Medicine.

[5]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[6]  C. Westphal,et al.  Ueber eine Combination von secundärer, durch Compression bedingte Degeneration des Rückenmarks mit multiplen Degenerationsherden , 1880, Archiv für Psychiatrie und Nervenkrankheiten.

[7]  Katrin Amunts,et al.  Understanding fiber mixture by simulation in 3D Polarized Light Imaging , 2015, NeuroImage.

[8]  F. O. Schmitt,et al.  The optical properties of vertebrate nerve axons as related to fiber size , 1937 .

[9]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[10]  Christoph Palm,et al.  Signal enhancement in polarized light imaging by means of independent component analysis , 2010, NeuroImage.

[11]  Lewis D. Griffin,et al.  Polarized light imaging of white matter architecture , 2007, Microscopy research and technique.

[12]  J G Veening,et al.  Medial forebrain bundle of the rat: III. Cytoarchitecture of the rostral (telencephalic) part of the medial forebrain bundle bed nucleus , 1990, The Journal of comparative neurology.

[13]  Nadim Joni Shah,et al.  Automatic identification of gray and white matter components in polarized light imaging , 2012, NeuroImage.

[14]  Katrin Amunts,et al.  Target sites for transcallosal fibers in human visual cortex – A combined diffusion and polarized light imaging study , 2015, Cortex.

[15]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[16]  R. Nieuwenhuys,et al.  The medial forebrain bundle of the rat. I. General introduction , 1982, The Journal of comparative neurology.

[17]  R. Nieuwenhuys,et al.  Medial forebrain bundle of the rat: IV. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus , 1990, The Journal of comparative neurology.

[18]  Timo Dickscheid,et al.  High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging , 2011, Front. Neuroinform..

[19]  Otto W. Witte,et al.  Microstructural Analysis of Human White Matter Architecture Using Polarized Light Imaging: Views from Neuroanatomy , 2011, Front. Neuroinform..

[20]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[21]  Hendrik Van der Loos,et al.  Cholesterol ester crystals in polarized light show pathways in the human brain , 1987, Brain Research.

[22]  Markus Axer,et al.  Relating Polarized Light Imaging Data Across Scales , 2013 .

[23]  H. Axer,et al.  Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy , 1999, Psychiatry Research: Neuroimaging.

[24]  W. J. Schmidt,et al.  Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma , 2005, Protoplasma.

[25]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[26]  H. Axer,et al.  Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy , 2000, Journal of Neuroscience Methods.

[27]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[28]  K. Amunts,et al.  Myeloarchitecture and Maps of the Cerebral Cortex , 2015 .

[29]  K. Amunts,et al.  Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors , 2009, Front. Hum. Neurosci..

[30]  M A MacConaill,et al.  Fibre bundles in the CNS revealed by polarized light. , 1970, Journal of Anatomy.

[31]  W. Cowan,et al.  The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components , 1982, The Journal of comparative neurology.

[32]  S. Clarke,et al.  The Long Distance Effects of Brain Lesions: Visualization of Axonal Pathways and Their Terminations in the Human Brain by the Nauta Method , 1991, Journal of neuropathology and experimental neurology.

[33]  Jochen Ditterich,et al.  Splash: A Software Tool for Stereotactic Planning of Recording Chamber Placement and Electrode Trajectories , 2011, Front. Neuroinform..

[34]  Friedrich Sanides,et al.  Die Grenzerscheinungen am Rande der menschlichen Sehrinde , 1965, Deutsche Zeitschrift für Nervenheilkunde.

[35]  Werner Kaminsky,et al.  An automatic optical imaging system for birefringent media , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .