Correcting pervasive errors in RNA crystallography through enumerative structure prediction

Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.

[1]  Vincent B. Chen,et al.  KING (Kinemage, Next Generation): A versatile interactive molecular and scientific visualization program , 2009, Protein science : a publication of the Protein Society.

[2]  D. Baker,et al.  Automated de novo prediction of native-like RNA tertiary structures , 2007, Proceedings of the National Academy of Sciences.

[3]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[4]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[5]  Raymond F. Gesteland,et al.  Life Before DNA. (Book Reviews: The RNA World. The Nature of Modern RNA Suggests a Prebiotic RNA World.) , 1993 .

[6]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[7]  Paul D. Adams,et al.  Averaged kick maps: less noise, more signal…and probably less bias , 2009, Acta crystallographica. Section D, Biological crystallography.

[8]  E. Coutsias,et al.  Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling , 2009, Nature Methods.

[9]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[10]  Feng Ding,et al.  RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. , 2012, RNA.

[11]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[12]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[13]  Eric Westhof,et al.  Frequency and isostericity of RNA base pairs , 2009, Nucleic acids research.

[14]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[15]  Randy J. Read,et al.  Improved molecular replacement by density- and energy-guided protein structure optimization , 2011, Nature.

[16]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[17]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[18]  P. Gendron,et al.  Quantitative analysis of nucleic acid three-dimensional structures. , 2001, Journal of molecular biology.

[19]  Paul D. Adams,et al.  phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics , 2010, Journal of applied crystallography.

[20]  Anna Marie Pyle,et al.  Semiautomated model building for RNA crystallography using a directed rotameric approach , 2010, Proceedings of the National Academy of Sciences.

[21]  Jack Snoeyink,et al.  RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone , 2007, Journal of mathematical biology.

[22]  F. Murphy,et al.  Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. , 2010, RNA.

[23]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[24]  Helen M Berman,et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.

[25]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[26]  D. Crothers,et al.  Nucleic Acids: Structures, Properties, and Functions , 2000 .

[27]  Rhiju Das,et al.  An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling , 2011, Proceedings of the National Academy of Sciences.

[28]  Daniel Herschlag,et al.  Structure and function converge to identify a hydrogen bond in a group I ribozyme active site. , 2009, Angewandte Chemie.

[29]  Takeshi Wada,et al.  Modified Uridines with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding* , 2008, Journal of Biological Chemistry.

[30]  Thomas Hermann,et al.  Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches , 2012, Proceedings of the National Academy of Sciences.