Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source

Abstract. An approach employing ultrafast laser hybrid subtractive-additive microfabrication, which combines ablation, three-dimensional nanolithography, and welding, is proposed for the realization of a lab-on-chip (LOC) device. A single amplified Yb:KGW femtosecond (fs)-pulsed laser source is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine-meshes microfilter out of hybrid organic–inorganic photopolymer SZ2080 inside them, and, finally, sealing the whole chip with cover glass into a single monolithic piece. The created microfluidic device proved its particle sorting function by separating 1- and 10-μm polystyrene spheres in an aqueous mixture. All together, this proves that laser microfabrication based on a single amplified fs laser source is a flexible and versatile approach for the hybrid subtractive-additive manufacturing of functional mesoscale multimaterial LOC devices.

[1]  Daniel Filippini,et al.  Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. , 2014, Lab on a chip.

[2]  Saulius Juodkazis,et al.  Formation of embedded patterns in glasses using femtosecond irradiation , 2004 .

[3]  Mangirdas Malinauskas,et al.  Nanophotonic lithography: a versatile tool for manufacturing functional three-dimensional micro-/nano-objects , 2012 .

[4]  Saulius Juodkazis,et al.  Optofluidic Fabry-Pérot sensor for water solutions at high flow rates , 2012 .

[5]  A. Tünnermann,et al.  Bonding of glass with femtosecond laser pulses at high repetition rates , 2011 .

[6]  H. Fouckhardt,et al.  Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices , 2001 .

[7]  H. Shea,et al.  High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors. , 2015, ACS applied materials & interfaces.

[8]  Albert Folch,et al.  The upcoming 3D-printing revolution in microfluidics. , 2016, Lab on a chip.

[9]  Min Ho Kwon,et al.  Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition , 2014 .

[10]  Yong‐Lai Zhang,et al.  Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. , 2010, Lab on a chip.

[11]  Harald Giessen,et al.  Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.

[12]  S. Juodkazis,et al.  Nanoscale Precision of 3D Polymerization via Polarization Control , 2016, 1603.06748.

[13]  R. M. Lumley,et al.  Lasers in industry , 1969 .

[14]  Balázs Farkas,et al.  Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring , 2017, Nanotechnology.

[15]  R. Gadonas,et al.  Nanophotonic lithography: a versatile tool for manufacturing functional three-dimensional micro-/nano-objects , 2012 .

[16]  Ady Arie,et al.  Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. , 2015, Optics letters.

[17]  C. Fotakis,et al.  Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. , 2008, ACS nano.

[18]  R. Gadonas,et al.  Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique , 2010 .

[19]  Davide Ricci,et al.  Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells , 2017, Materials.

[20]  P. Corkum,et al.  Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. , 2005, Optics letters.

[21]  Mangirdas Malinauskas,et al.  CUSTOM ON DEMAND 3D PRINTING OF FUNCTIONAL MICROSTRUCTURES , 2015 .

[22]  Bilal Gökce,et al.  Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers , 2016, Nanotechnology.

[23]  Saulius Juodkazis,et al.  A bactericidal microfluidic device constructed using nano-textured black silicon , 2016 .

[24]  Bekir S. Yilba Experimental investigation into CO 2 laser cutting parameters , 1996 .

[25]  R. Osellame,et al.  Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. , 2012, Lab on a chip.

[26]  Jens Gottmann,et al.  3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching , 2010 .

[27]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[28]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[29]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[30]  J. Nishii,et al.  Welding of Transparent Materials Using Femtosecond Laser Pulses , 2005 .

[31]  Bekir Sami Yilbas,et al.  Experimental investigation into CO2 laser cutting parameters , 1996 .

[32]  Mangirdas Malinauskas,et al.  Direct laser writing of microstructures on optically opaque and reflective surfaces , 2014 .

[33]  K. Sugioka,et al.  Femtosecond laser three-dimensional micro- and nanofabrication , 2014 .

[34]  D. Weitz,et al.  Single-cell analysis and sorting using droplet-based microfluidics , 2013, Nature Protocols.

[35]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[36]  Ion Lizuain,et al.  Femtosecond laser ablation for microfluidics , 2005 .

[37]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[38]  M. Wegener,et al.  Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins , 2017, Advanced materials.

[39]  S. Juodkazis,et al.  Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography , 2017, Materials.

[40]  Robert L. Byer,et al.  Femtosecond laser ablation properties of borosilicate glass , 2004 .

[41]  V. Sirutkaitis,et al.  Rapid microfabrication of transparent materials using filamented femtosecond laser pulses , 2014 .

[42]  Jürgen Popp,et al.  A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. , 2007, Analytical chemistry.

[43]  W M Steen,et al.  Laser material processing—an overview , 2003 .

[44]  F. Yoshino,et al.  Fusion Welding of Glass Using Femtosecond Laser Pulses with High-repetition Rates , 2007 .

[45]  M. Malinauskas,et al.  Microactuation and sensing using reversible deformations of laser-written polymeric structures , 2017, Nanotechnology.