Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source
暂无分享,去创建一个
Saulius Juodkazis | Mangirdas Malinauskas | Roaldas Gadonas | Linas Jonušauskas | Ričardas Buividas | Sima Rekštytė | Simas Butkus | R. Gadonas | S. Juodkazis | M. Malinauskas | L. Jonušauskas | R. Buividas | S. Rekstyte | S. Butkus
[1] Daniel Filippini,et al. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. , 2014, Lab on a chip.
[2] Saulius Juodkazis,et al. Formation of embedded patterns in glasses using femtosecond irradiation , 2004 .
[3] Mangirdas Malinauskas,et al. Nanophotonic lithography: a versatile tool for manufacturing functional three-dimensional micro-/nano-objects , 2012 .
[4] Saulius Juodkazis,et al. Optofluidic Fabry-Pérot sensor for water solutions at high flow rates , 2012 .
[5] A. Tünnermann,et al. Bonding of glass with femtosecond laser pulses at high repetition rates , 2011 .
[6] H. Fouckhardt,et al. Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices , 2001 .
[7] H. Shea,et al. High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors. , 2015, ACS applied materials & interfaces.
[8] Albert Folch,et al. The upcoming 3D-printing revolution in microfluidics. , 2016, Lab on a chip.
[9] Min Ho Kwon,et al. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition , 2014 .
[10] Yong‐Lai Zhang,et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. , 2010, Lab on a chip.
[11] Harald Giessen,et al. Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.
[12] S. Juodkazis,et al. Nanoscale Precision of 3D Polymerization via Polarization Control , 2016, 1603.06748.
[13] R. M. Lumley,et al. Lasers in industry , 1969 .
[14] Balázs Farkas,et al. Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring , 2017, Nanotechnology.
[15] R. Gadonas,et al. Nanophotonic lithography: a versatile tool for manufacturing functional three-dimensional micro-/nano-objects , 2012 .
[16] Ady Arie,et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. , 2015, Optics letters.
[17] C. Fotakis,et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. , 2008, ACS nano.
[18] R. Gadonas,et al. Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique , 2010 .
[19] Davide Ricci,et al. Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells , 2017, Materials.
[20] P. Corkum,et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. , 2005, Optics letters.
[21] Mangirdas Malinauskas,et al. CUSTOM ON DEMAND 3D PRINTING OF FUNCTIONAL MICROSTRUCTURES , 2015 .
[22] Bilal Gökce,et al. Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers , 2016, Nanotechnology.
[23] Saulius Juodkazis,et al. A bactericidal microfluidic device constructed using nano-textured black silicon , 2016 .
[24] Bekir S. Yilba. Experimental investigation into CO 2 laser cutting parameters , 1996 .
[25] R. Osellame,et al. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. , 2012, Lab on a chip.
[26] Jens Gottmann,et al. 3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching , 2010 .
[27] J. Nishii,et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.
[28] P. Abgrall,et al. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .
[29] A. Tünnermann,et al. Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .
[30] J. Nishii,et al. Welding of Transparent Materials Using Femtosecond Laser Pulses , 2005 .
[31] Bekir Sami Yilbas,et al. Experimental investigation into CO2 laser cutting parameters , 1996 .
[32] Mangirdas Malinauskas,et al. Direct laser writing of microstructures on optically opaque and reflective surfaces , 2014 .
[33] K. Sugioka,et al. Femtosecond laser three-dimensional micro- and nanofabrication , 2014 .
[34] D. Weitz,et al. Single-cell analysis and sorting using droplet-based microfluidics , 2013, Nature Protocols.
[35] Saulius Juodkazis,et al. Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.
[36] Ion Lizuain,et al. Femtosecond laser ablation for microfluidics , 2005 .
[37] E. Mazur,et al. Femtosecond laser micromachining in transparent materials , 2008 .
[38] M. Wegener,et al. Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins , 2017, Advanced materials.
[39] S. Juodkazis,et al. Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography , 2017, Materials.
[40] Robert L. Byer,et al. Femtosecond laser ablation properties of borosilicate glass , 2004 .
[41] V. Sirutkaitis,et al. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses , 2014 .
[42] Jürgen Popp,et al. A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. , 2007, Analytical chemistry.
[43] W M Steen,et al. Laser material processing—an overview , 2003 .
[44] F. Yoshino,et al. Fusion Welding of Glass Using Femtosecond Laser Pulses with High-repetition Rates , 2007 .
[45] M. Malinauskas,et al. Microactuation and sensing using reversible deformations of laser-written polymeric structures , 2017, Nanotechnology.