The ACR Model: A Multivariate Dynamic Mixture Autoregression

This paper proposes and analyses the autoregressive conditional root (ACR) time-series model. This multivariate dynamic mixture autoregression allows for non-stationary epochs. It proves to be an appealing alternative to existing nonlinear models, e.g. the threshold autoregressive or Markov switching class of models, which are commonly used to describe nonlinear dynamics as implied by arbitrage in presence of transaction costs. Simple conditions on the parameters of the ACR process and its innovations are shown to imply geometric ergodicity, stationarity and existence of moments. Furthermore, consistency and asymptotic normality of the maximum likelihood estimators are established. An application to real exchange rate data illustrates the analysis. Copyright (c) Blackwell Publishing Ltd and the Department of Economics, University of Oxford, 2008.

[1]  Martin Berka General Equilibrium Model of Arbitrage Trade and Real Exchange Rate Persistence , 2008 .

[2]  Alain Guay,et al.  Adaptive consistent unit-root tests based on autoregressive threshold model , 2008 .

[3]  S. T. Jensen,et al.  ON THE LAW OF LARGE NUMBERS FOR (GEOMETRICALLY) ERGODIC MARKOV CHAINS , 2007, Econometric Theory.

[4]  Wai Keung Li,et al.  On a mixture vector autoregressive model , 2007 .

[5]  C. Robert,et al.  STOCHASTIC UNIT ROOT MODELS , 2006, Econometric Theory.

[6]  W. Li,et al.  On a Mixture GARCH Time‐Series Model , 2006 .

[7]  Pentti Saikkonen,et al.  Stability results for nonlinear error correction models , 2005 .

[8]  Anders Rahbek,et al.  Vector Equilibrium Correction Models with Non-Linear Discontinuous Adjustments , 2004 .

[9]  R. Douc,et al.  Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime , 2004, math/0503681.

[10]  Marine Carrasco,et al.  Tests for Unit-Root versus Threshold Specification With an Application to the Purchasing Power Parity Relationship , 2004 .

[11]  B. Hansen,et al.  Testing for two-regime threshold cointegration in vector error-correction models , 2002 .

[12]  Robert B. Davies,et al.  Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case , 2002 .

[13]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[14]  Bruce E. Hansen,et al.  THRESHOLD AUTOREGRESSION WITH A UNIT ROOT , 2001 .

[15]  Mark P. Taylor,et al.  Nonlinear Mean‐Reversion in Real Exchange Rates: Toward a Solution To the Purchasing Power Parity Puzzles , 2001 .

[16]  W. Li,et al.  On a logistic mixture autoregressive model , 2001 .

[17]  Mark P. Taylor,et al.  Why is it so Difficult to Beat the Random Walk Forecast of Exchange Rates? , 2001 .

[18]  Wai Keung Li,et al.  On a Mixture Autoregressive Conditional Heteroscedastic Model , 2001 .

[19]  Ying-Wong Cheung,et al.  On the purchasing power parity puzzle , 2000 .

[20]  Kenneth Rogoff,et al.  The Six Major Puzzles in International Macroeconomics: Is There a Common Cause? , 2000, NBER Macroeconomics Annual.

[21]  W. Li,et al.  On a mixture autoregressive model , 2000 .

[22]  Robert F. Engle,et al.  The Reviewof Economicsand Statistics , 1999 .

[23]  Zacharias Psaradakis,et al.  Detecting periodically collapsing bubbles: a Markov‐switching unit root test , 1999 .

[24]  Clive W. J. Granger,et al.  Unit Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates , 1998 .

[25]  W. Enders,et al.  Cointegration and Threshold Adjustment , 1998 .

[26]  Heather M. Anderson,et al.  Transaction Costs and Nonlinear Adjustment Towards Equilibrium in the US Treasury Bill Market , 1997 .

[27]  Norman R. Swanson,et al.  An introduction to stochastic unit-root processes , 1997 .

[28]  D. Peel,et al.  Transactions Costs and Nonlinear Adjustment in Real Exchange Rates; An Empirical Investigation , 1997, Journal of Political Economy.

[29]  Alan M. Taylor,et al.  Nonlinear Aspects of Goods-Market Arbitrage and Adjustment: Heckscher's Commodity Points Revisited , 1997 .

[30]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[31]  Terence C. Mills,et al.  Randomized unit root processes for modelling and forecasting financial time series: Theory and applications , 1996 .

[32]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[33]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[34]  R. Uppal,et al.  The Exchange Rate in the Presence of Transaction Costs: Implications for Tests of Purchasing Power Parity , 1995 .

[35]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[36]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[37]  N. Shephard Partial non-Gaussian state space , 1994 .

[38]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[39]  Daniel B. Nelson,et al.  ARCH MODELS a , 1994 .

[40]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[41]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[42]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[43]  Tim Bollerslev,et al.  COMMON PERSISTENCE IN CONDITIONAL VARIANCES , 1993 .

[44]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[45]  B. Dumas Dynamic Equilibrium and the Real Exchange Rate in a Spatially Separated World , 1992 .

[46]  Paul A. Ruud,et al.  Extensions of estimation methods using the EM algorithm , 1991 .

[47]  D. Tjøstheim Non-linear time series and Markov chains , 1990, Advances in Applied Probability.

[48]  H. A. Karlsen,et al.  Autoregressive segmentation of signal traces with applications to geological dipmeter measurements , 1990 .

[49]  Timo Teräsvirta,et al.  Testing linearity against smooth transition autoregressive models , 1988 .

[50]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[51]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .

[52]  Paul D. Feigin,et al.  RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .

[53]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[54]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[55]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[56]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[57]  S. Goldfeld,et al.  A Markov model for switching regressions , 1973 .

[58]  B. M. Brown,et al.  Martingale Central Limit Theorems , 1971 .