Heat kernel upper bounds on a complete non-compact manifold.

Let M be a smooth connected non-compact geodesically complete Riemannian manifold, ? denote the Laplace operator associated with the Riemannian metric, n = 2 be the dimension of M. Consider the heat equation on the manifold ut - ?u = 0, where u = u(x,t), x I M, t > 0. The heat kernel p(x,y,t) is by definition the smallest positive fundamental solution to the heat equation which exists on any manifold (see [Ch], [D]). The purpose of the present work is to obtain uniform upper bounds of p(x,y,t) which would clarify the behaviour of the heat kernel as t ? +8 and r = dist(x,y) ? +8.

[1]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[2]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[3]  D. G. Fulton,et al.  ON SOLUTIONS OF THE HEAT EQUATION , 1959 .

[4]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[5]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[6]  A Lower Estimate for Central Probabilities on Polycyclic Groups , 1992, Canadian Journal of Mathematics.

[7]  Shing-Tung Yau,et al.  ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD , 1981 .

[8]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[9]  H. Donnelly On the essential spectrum of a complete Riemannian manifold , 1981 .

[10]  Shiu-yuen Cheng,et al.  Heat kernel estimates and lower bound of eigenvalues , 1981 .

[11]  A. Gushchin ON THE UNIFORM STABILIZATION OF SOLUTIONS OF THE SECOND MIXED PROBLEM FOR A PARABOLIC EQUATION , 1984 .

[12]  E. Davies,et al.  Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds , 1988 .

[13]  Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: un contre-exemple , 1994 .

[14]  E. Davies,et al.  EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON HEAT KERNELS , 1987 .

[15]  A. Grigor’yan ON THE EXISTENCE OF POSITIVE FUNDAMENTAL SOLUTIONS OF THE LAPLACE EQUATION ON RIEMANNIAN MANIFOLDS , 1987 .

[16]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[17]  E. Davies,et al.  SHARP HEAT KERNEL BOUNDS FOR SOME LAPLACE OPERATORS , 1989 .

[18]  Table ronde de géométrie différentielle,et al.  Actes de la table ronde de géométrie différentielle : en l'honneur de Marcel Berger , 1996 .

[19]  J. Dodziuk,et al.  Maximum principle for parabolic inequalities and the heat flow on open manifolds , 1983 .

[20]  Fundamental solution of the heat equation on an arbitrary Riemannian manifold , 1987 .

[21]  S. Éidel'man,et al.  Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications , 1984 .

[22]  V. I. Ušakov STABILIZATION OF SOLUTIONS OF THE THIRD MIXED PROBLEM FOR A SECOND ORDER PARABOLIC EQUATION IN A NONCYLINDRICAL DOMAIN , 1981 .

[23]  E. Davies Heat kernel bounds, conservation of probability and the feller property , 1992 .

[24]  D. Stroock,et al.  Upper bounds for symmetric Markov transition functions , 1986 .

[25]  A. Grigor’yan THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS , 1992 .

[26]  Laurent Saloff-Coste,et al.  Isopérimétrie pour les groupes et les variétés , 1993 .