Shorter unentangled proofs for ground state connectivity

Can one considerably shorten a proof for a quantum problem by using a protocol with a constant number of unentangled provers? We consider a frustration-free variant of the $$\textsf {QCMA}$$QCMA-complete ground state connectivity (GSCON) problem for a system of size n with a proof of superlinear size. We show that we can shorten this proof in $$\textsf {QMA}(2)$$QMA(2): There exists a two-copy, unentangled proof with length of order n, up to logarithmic factors, while the completeness–soundness gap of the new protocol becomes a small inverse polynomial in n.

[1]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[2]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[3]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[4]  Yi-Kai Liu The complexity of the consistency and N-representability problems for quantum states - eScholarship , 2007, 0712.3041.

[5]  Jing Chen,et al.  Short Multi-Prover Quantum Proofs for SAT without Entangled Measurements , 2010, 1011.0716.

[6]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[7]  François Le Gall,et al.  On QMA protocols with two short quantum proofs , 2011, Quantum Inf. Comput..

[8]  Hirotada Kobayashi,et al.  Achieving perfect completeness in classical-witness quantum merlin-arthur proof systems , 2011, Quantum Inf. Comput..

[9]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[10]  Salman Beigi,et al.  NP vs QMA_log(2) , 2008, Quantum Inf. Comput..

[11]  Kirk Pruhs,et al.  Speed scaling to manage energy and temperature , 2007, JACM.

[12]  Bill Fefferman,et al.  The Power of Unentanglement , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[13]  Aram W. Harrow,et al.  An efficient test for product states , 2010 .

[14]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[15]  Alain Tapp,et al.  A Quantum Characterization Of NP , 2007, computational complexity.

[16]  Jamie Sikora,et al.  Ground State Connectivity of Local Hamiltonians , 2014, ICALP.

[17]  Michael A. Forbes,et al.  Improved Soundness for QMA with Multiple Provers , 2011, Electron. Colloquium Comput. Complex..

[18]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.