CMI growth rates for Saturnian kilometric radiation

[1] We calculate growth rates for extraordinary mode Saturnian kilometric radiation generated by the electron cyclotron maser instability using a ring-type (DGH) electron phase distribution model fitted to measured electron energy distributions in Saturn's auroral acceleration region. The observed distributions are unstable in spatially isolated regions of transverse linear size of order 103 km. Each unstable region has a growth rate consistent with amplification of background radiation to the peak observed intensity, approximately 14 electric field e-foldings. The observed propagation direction and frequency decrement below the electron cyclotron frequency are also consistent with the CMI growth model.

[1]  D. Gurnett,et al.  Mapping of auroral kilometric radiation sources to the aurora , 1988 .

[2]  N. Omidi,et al.  Growth rate calculations of auroral kilometric radiation using the relativistic resonance condition , 1982 .

[3]  L. F. Ziebell,et al.  Electromagnetic cyclotron-loss-cone instability associated with weakly relativistic electrons , 1982, Journal of Plasma Physics.

[4]  D. Gurnett,et al.  Introduction to Plasma Physics: Introduction , 2005 .

[5]  J. Scudder,et al.  Dependence of cyclotron maser instability growth rates on electron velocity distributions and perturbation by solitary waves , 2007, 0705.0877.

[6]  R. Winglee Effects of a finite plasma temperature on electron-cyclotron maser emission , 1985 .

[7]  J. L. Green,et al.  On the polarization and origin of auroral kilometric radiation , 1977 .

[8]  K. Szego,et al.  Cassini Plasma Spectrometer Investigation , 1996, Optics & Photonics.

[9]  R. Ergun,et al.  Generation and propagation of cyclotron maser emissions in the finite auroral kilometric radiation source cavity , 2002 .

[10]  N. Omidi,et al.  Generation of Auroral Kilometric and Z Mode Radiation , 1984 .

[11]  R. A. Dory,et al.  UNSTABLE ELECTROSTATIC PLASMA WAVES PROPAGATING PERPENDICULAR TO A MAGNETIC FIELD , 1965 .

[12]  B. T. Narheim,et al.  The Cassini CAPS Electron Spectrometer , 2013 .

[13]  Lou‐Chuang Lee,et al.  A theory of the terrestrial kilometric radiation , 1979 .

[14]  R. Ergun,et al.  FAST observations of electron distributions within AKR source regions , 1998 .

[15]  James R. Thieman,et al.  Angular beaming model of Jupiter's decametric radio emissions based on Cassini RPWS data analysis , 2008 .

[16]  S. Nozawa,et al.  Effects of a kappa distribution function of electrons on incoherent scatter spectra , 2000 .

[17]  Joseph E. Borovsky,et al.  Measurement techniques in space plasmas : particles , 1998 .

[18]  R. Manning,et al.  The Galactic background radiation from 0.2 to 13.8 MHz , 2001 .

[19]  D. Gurnett,et al.  DE‐1 observations of ordinary mode and extraordinary mode auroral kilometric radiation , 1984 .

[20]  D. Gurnett,et al.  Spatial and temporal properties of AKR burst emission derived from Cluster WBD VLBI studies , 2004 .

[21]  R. Treumann The electron–cyclotron maser for astrophysical application , 2006 .

[22]  R. Ergun,et al.  Generation of short‐burst radiation through Alfvénic acceleration of auroral electrons , 2007 .

[23]  P. Zarka RADIO AND PLASMA WAVES AT THE OUTER PLANETS , 2002 .

[24]  Baptiste Cecconi,et al.  Jupiter's low-frequency radio spectrum from Cassini/Radio and Plasma Wave Science (RPWS) absolute flux density measurements : Cassini flyby of Jupiter , 2004 .

[25]  P. Louarn,et al.  Generation of the Auroral Kilometric Radiation in plasma cavities—II. The cyclotron maser instability in small size sources , 1996 .

[26]  P. Schippers,et al.  Properties of Saturn kilometric radiation measured within its source region , 2010, 1101.3842.

[27]  Lou‐Chuang Lee,et al.  Generation of the auroral kilometric radiation , 1982 .

[28]  Philippe Zarka,et al.  Saturn kilometric radiation: Average and statistical properties , 2008 .