Estimating Forest Leaf Area Index and Canopy Chlorophyll Content with Sentinel-2: An Evaluation of Two Hybrid Retrieval Algorithms

Estimates of biophysical and biochemical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) are a fundamental requirement for effectively monitoring and managing forest environments. With its red-edge bands and high spatial resolution, the Multispectral Instrument (MSI) on board the Sentinel-2 missions is particularly well-suited to LAI and CCC retrieval. Using field data collected throughout the growing season at a deciduous broadleaf forest site in Southern England, we evaluated the performance of two hybrid retrieval algorithms for estimating LAI and CCC from MSI data: the Scattering by Arbitrarily Inclined Leaves (SAIL)-based L2B retrieval algorithm made available to users in the Sentinel Application Platform (SNAP), and an alternative retrieval algorithm optimised for forest environments, trained using the Invertible Forest Reflectance Model (INFORM). Moderate performance was associated with the SNAP L2B retrieval algorithm for both LAI (r2 = 0.54, RMSE = 1.55, NRMSE = 43%) and CCC (r2 = 0.52, RMSE = 0.79 g m−2, NRMSE = 45%), while improvements were obtained using the INFORM-based retrieval algorithm, particularly in the case of LAI (r2 = 0.79, RMSE = 0.47, NRMSE = 13%), but also in the case of CCC (r2 = 0.69, RMSE = 0.52 g m−2, NRMSE = 29%). Forward modelling experiments confirmed INFORM was better able to reproduce observed MSI spectra than SAIL. Based on our results, for forest-related applications using MSI data, we recommend users seek retrieval algorithms optimised for forest environments.

[1]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[2]  Philip Lewis,et al.  An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest , 2011 .

[3]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[4]  Miina Rautiainen,et al.  Seasonal variation in MODIS LAI for a boreal forest area in Finland , 2012 .

[5]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[6]  Yingying Dong,et al.  Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[7]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[8]  G. D’Urso,et al.  Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize , 2009 .

[9]  Shunlin Liang,et al.  Recent developments in estimating land surface biogeophysical variables from optical remote sensing , 2007 .

[10]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[11]  Frédéric Baret,et al.  GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production , 2013 .

[12]  José F. Moreno,et al.  Spectral band selection for vegetation properties retrieval using Gaussian processes regression , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Qing Xiao,et al.  Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  J. Privette,et al.  VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products , 2003 .

[15]  Jérôme M. B. Louis,et al.  Copernicus Sentinel-2A Calibration and Products Validation Status , 2017, Remote. Sens..

[16]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[17]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[18]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[19]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[20]  G. F. Peterken,et al.  Long-term change in growth, mortality and regeneration of trees in Denny Wood, an old-growth wood-pasture in the New Forest (UK) , 1999 .

[21]  J. Baltzer,et al.  Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. , 2005, American journal of botany.

[22]  Luke A. Brown,et al.  Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index Over a Vineyard Dominated Mediterranean Environment , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Marco Heurich,et al.  Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Wolfram Mauser,et al.  Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping , 2012, Remote. Sens..

[25]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[26]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[27]  J. Dash,et al.  Multi-scale analysis and validation of the Envisat MERIS Terrestrial Chlorophyll Index (MTCI) in woodland , 2008 .

[28]  Clement Atzberger,et al.  Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples , 2016, Remote. Sens..

[29]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[30]  H. Pleijel,et al.  Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings , 2007, Photosynthesis Research.

[31]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[32]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Matti Mottus,et al.  Retrieval of boreal forest LAI using a forest reflectance model and empirical regressions , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[34]  P. Beck,et al.  Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI , 2006 .

[35]  Francesco Vuolo,et al.  Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy , 2018, Remote Sensing of Environment.

[36]  Jb Miller,et al.  A formula for average foliage density , 1967 .

[37]  Frédéric Baret,et al.  A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements , 2015, Remote. Sens..

[38]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[39]  M. Schlerf,et al.  Suitability and adaptation of PROSAIL radiative transfer model for hyperspectral grassland studies , 2013 .

[40]  Fei Li,et al.  Estimating Forest fAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM , 2015, Remote. Sens..

[41]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[42]  Frédéric Baret,et al.  OPERATIONAL 333m BIOPHYSICAL PRODUCTS OF THE COPERNICUS GLOBAL LAND SERVICE FOR AGRICULTURE MONITORING , 2015 .

[43]  M. Rautiainen,et al.  Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index , 2017 .

[44]  Adrian C. Newton,et al.  Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites , 2008 .

[45]  A. Gitelson,et al.  Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. , 2016, Plant, cell & environment.

[46]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[47]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[48]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[49]  P. Atkinson,et al.  Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology , 2012 .

[50]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[51]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[52]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[53]  Christian Mielke,et al.  Assessment of Red-Edge Position Extraction Techniques: A Case Study for Norway Spruce Forests Using HyMap and Simulated Sentinel-2 Data , 2016 .

[54]  Vuolo Francesco,et al.  Retrieval of biophysical vegetation products from RapidEye imagery , 2010 .

[55]  M. Rautiainen,et al.  The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study , 2016 .

[56]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[57]  Paul J. Curran,et al.  Methodologies and Uncertainties in the Use of the Terrestrial Chlorophyll Index for the Sentinel-3 Mission , 2012, Remote. Sens..

[58]  Heather McNairn,et al.  Validation of the Sentinel Simplified Level 2 Product Prototype Processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data , 2019, Remote Sensing of Environment.

[59]  Wenjiang Huang,et al.  A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2 , 2019, Remote. Sens..

[60]  Clement Atzberger,et al.  Vegetation Structure Retrieval in Beech and Spruce Forests Using Spectrodirectional Satellite Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[61]  J. Markwell,et al.  Calibration of the Minolta SPAD-502 leaf chlorophyll meter , 2004, Photosynthesis Research.

[62]  A. Lang Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies , 1986 .

[63]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[64]  Quevedo Amaya,et al.  Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico , 2020 .

[65]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[66]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[67]  J. Dash,et al.  Evaluation of leaf area index estimated from medium spatial resolution remote sensing data in a broadleaf deciduous forest in southern England, UK , 2011 .

[68]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[69]  Jan G. P. W. Clevers,et al.  Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop , 2017, Remote. Sens..

[70]  Aleixandre Verger,et al.  Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations , 2011 .

[71]  Valérie Demarez,et al.  Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model , 1999 .