Machine learning enables completely automatic tuning of a quantum device faster than human experts
暂无分享,去创建一个
Dino Sejdinovic | Liuqi Yu | G. A. D. Briggs | L. C. Camenzind | D. M. Zumbühl | M. A. Osborne | E. A. Laird | J. Kirkpatrick | H. Moon | D. T. Lennon | N. M. van Esbroeck | F. Vigneau | N. Ares
[1] Jacob M. Taylor,et al. Machine learning techniques for state recognition and auto-tuning in quantum dots , 2017, npj Quantum Information.
[2] K. W. Chan,et al. Autonomous Tuning and Charge-State Detection of Gate-Defined Quantum Dots , 2019, Physical Review Applied.
[3] E. R. MacQuarrie,et al. Autotuning of double dot devices in situ with machine learning. , 2020, Physical review applied.
[4] L. M. K. Vandersypen,et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.
[5] Jacob M. Taylor,et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.
[6] Dieter Schuh,et al. Tuning Methods for Semiconductor Spin Qubits , 2018, Physical Review Applied.
[7] P. T. Eendebak,et al. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime , 2016, 1603.02274.
[8] Hariharan Narayanan,et al. Sampling Hypersurfaces through Diffusion , 2008, APPROX-RANDOM.
[9] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[10] Werner Wegscheider,et al. Automated Tuning of Double Quantum Dots into Specific Charge States Using Neural Networks , 2019 .
[11] Liuqi Yu,et al. Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. , 2018, Physical review letters.
[12] D. Loss,et al. Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot , 2018, Physical Review B.
[13] Michael A. Osborne,et al. Ef fi ciently measuring a quantum device using machine learning , 2019 .
[14] Liuqi Yu,et al. Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot , 2017, Nature Communications.
[15] Saeed Fallahi,et al. Notch filtering the nuclear environment of a spin qubit. , 2016, Nature nanotechnology.
[16] Andreas D. Wieck,et al. A machine learning approach for automated fine-tuning of semiconductor spin qubits , 2019, Applied Physics Letters.
[17] Michael A. Osborne,et al. Efficiently measuring a quantum device using machine learning , 2018, npj Quantum Information.
[18] Dino Sejdinovic,et al. Quantum device fine-tuning using unsupervised embedding learning , 2020, New Journal of Physics.
[19] A. R. Mills,et al. Computer-automated tuning procedures for semiconductor quantum dot arrays , 2019, Applied Physics Letters.
[20] Stopa. Quantum dot self-consistent electronic structure and the Coulomb blockade. , 1996, Physical review. B, Condensed matter.
[21] Andriy Myronenko,et al. Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[22] R. Ishihara,et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.
[23] P. T. Eendebak,et al. Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.
[24] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[25] L. Vandersypen,et al. Automated tuning of inter-dot tunnel coupling in double quantum dots , 2018, Applied Physics Letters.