Design, Fabrication and Characterization of Electrokinetically Pumped Microfluidic Chips for Cell Culture Applications

[1]  Dongqing Li,et al.  Visualization and numerical modelling of microfluidic on-chip injection processes. , 2003, Journal of colloid and interface science.

[2]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[3]  Hanry Yu,et al.  A practical guide to microfluidic perfusion culture of adherent mammalian cells. , 2007, Lab on a chip.

[4]  Mengsu Yang,et al.  Microfluidics technology for manipulation and analysis of biological cells , 2006 .

[5]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[6]  Guann-Pyng Li,et al.  Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[7]  F. Regnier,et al.  Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. , 2002, Journal of chromatography. A.

[8]  F. Tseng,et al.  Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination , 2002 .

[9]  K. Jacobs Introduction to Microfluidics. By Patrick Tabeling. , 2006 .

[10]  Juan G. Santiago,et al.  High-pressure electroosmotic pumps based on porous polymer monoliths , 2004 .

[11]  N. Stellwagen,et al.  DNA and buffers: are there any noninteracting, neutral pH buffers? , 2000, Analytical biochemistry.

[12]  Philippe Renaud,et al.  A simple pneumatic setup for driving microfluidics. , 2007, Lab on a chip.

[13]  Gwo-Bin Lee,et al.  Minimal dead-volume connectors for microfluidics using PDMS casting techniques , 2004 .

[14]  C. Henry,et al.  Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments. , 2003, Analytical chemistry.

[15]  Hongkai Wu,et al.  Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives. , 2006, Analytical chemistry.

[16]  C. Culbertson,et al.  Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. , 2005, Analytical chemistry.

[17]  Ali Khademhosseini,et al.  A soft lithographic approach to fabricate patterned microfluidic channels. , 2004, Analytical chemistry.

[18]  D. Erickson,et al.  Streaming Potential and Streaming Current Methods for Characterizing Heterogeneous Solid Surfaces. , 2001, Journal of colloid and interface science.

[19]  J. Hahn,et al.  Poly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines , 2002, Electrophoresis.

[20]  J. Santiago,et al.  Porous glass electroosmotic pumps: theory. , 2003, Journal of colloid and interface science.

[21]  Teruo Fujii,et al.  Microfluidic PDMS (Polydimethylsiloxane) Bioreactor for Large‐Scale Culture of Hepatocytes , 2004, Biotechnology progress.

[22]  H. Morgan,et al.  Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws , 2003 .

[23]  Dongqing Li,et al.  Direct and indirect electroosmotic flow velocity measurements in microchannels. , 2002, Journal of colloid and interface science.

[24]  R. Ian Freshney,et al.  Culture of cells for tissue engineering , 1994 .

[25]  M. M. Oers,et al.  Insect Cell Culture , 2010 .

[26]  Yafeng Guan,et al.  Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery , 2005 .

[27]  Zheng Cui,et al.  Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro‐bioreactor , 2006 .

[28]  Monica Veszelei,et al.  Poly(dimethylsiloxane) microchip: microchannel with integrated open electrospray tip. , 2004, Lab on a chip.

[29]  S. Takayama,et al.  Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. , 2004, The Analyst.

[30]  Samuel K Sia,et al.  Lab-on-a-chip devices for global health: past studies and future opportunities. , 2007, Lab on a chip.

[31]  Douglas J Jackson,et al.  Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. , 2003, Analytical chemistry.

[32]  Qiaosheng Pu,et al.  Electric field-decoupled electroosmotic pump for microfluidic devices. , 2003, Journal of chromatography. A.

[33]  R. Probstein Physicochemical Hydrodynamics: An Introduction , 1989 .

[34]  R. Zare,et al.  Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. , 2005, Lab on a chip.

[35]  Nancy Allbritton,et al.  Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. , 2002, Analytical chemistry.

[36]  Bernice M. Martin,et al.  Tissue culture techniques: an introduction. , 1994 .

[37]  Dongqing Li,et al.  Determining zeta Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow. , 2000, Journal of colloid and interface science.

[38]  Yoon‐Kyoung Cho,et al.  A new method to measure zeta potentials of microfabricated channels by applying a time-periodic electric field in a T-channel , 2007 .

[39]  M. Harrison,et al.  General Techniques of Cell Culture , 1997 .

[40]  S. Wereley,et al.  PIV measurements of a microchannel flow , 1999 .

[41]  S. K. Griffiths,et al.  The efficiency of electrokinetic pumping at a condition of maximum work , 2004, Electrophoresis.

[42]  Z Hugh Fan,et al.  Macro-to-micro interfaces for microfluidic devices. , 2004, Lab on a chip.

[43]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[44]  Robert T Kennedy,et al.  Perfusion and chemical monitoring of living cells on a microfluidic chip. , 2005, Lab on a chip.

[45]  P. Wong,et al.  Electrokinetics in micro devices for biotechnology applications , 2004, IEEE/ASME Transactions on Mechatronics.

[46]  L. Griffith,et al.  Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. , 2002, Tissue engineering.

[47]  David J. Beebe,et al.  Active control of electroosmotic flow in microchannels using light , 2001 .

[48]  Christopher J. Backhouse,et al.  Ferrofluid-based microchip pump and valve , 2004 .

[49]  Tomasz Glawdel,et al.  Whole Chip Temperature Measurements Using Thin-Film PDMS/Rhodamine B for Microfluidic Chip Design , 2007 .

[50]  S. Haswell,et al.  Electrical currents and liquid flow rates in micro-reactors. , 2001, Lab on a chip.

[51]  Dietrich Kohlheyer,et al.  Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. , 2006, Lab on a chip.

[52]  T. Warburton,et al.  NUMERICAL SIMULATION OF MIXED ELECTROOSMOTIC/PRESSURE DRIVEN MICROFLOWS , 2002 .

[53]  Yong-Sang Kim,et al.  A dispoasble polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc , 2004 .

[54]  G. Schneider,et al.  A 3D electrokinetic flow structure of solution displacement in microchannels for on-chip sample preparation applications , 2006 .

[55]  Dongqing Li,et al.  A new method of evaluating the average electro-osmotic velocity in microchannels. , 2002, Journal of colloid and interface science.

[56]  Hsueh-Chia Chang,et al.  A new electro-osmotic pump based on silica monoliths , 2006 .

[57]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[58]  Richard M Crooks,et al.  Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. , 2003, Journal of the American Chemical Society.

[59]  David J. Beebe,et al.  Insect Cell Culture in Microfluidic Channels , 2002 .

[60]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[61]  M. Oddy Electrokinetic transport phenomena , 2005 .

[62]  F. Tseng Nano/Micro Fluidic Systems , 2006 .

[63]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[64]  David Erickson,et al.  Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices , 2005 .

[65]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[66]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[67]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[68]  S. Siddhaye,et al.  System-level modeling and simulation of biochemical assays in lab-on-a-chip devices , 2007 .

[69]  Irving M Shapiro,et al.  Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. , 2004, Journal of biomedical materials research. Part A.

[70]  Babak Ziaie,et al.  A magnetically driven PDMS micropump with ball check-valves , 2005 .

[71]  Yi Wang,et al.  System-Level Simulation of Flow-Induced Dispersion in Lab-on-a-Chip Systems , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[72]  B. J. Kane,et al.  Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. , 2006, Analytical chemistry.

[73]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[74]  Wouter Olthuis,et al.  A closed-loop controlled electrochemically actuated micro-dosing system , 2000 .

[75]  Goran Goranovic,et al.  Theoretical analysis of the low-voltage cascade electro-osmotic pump , 2003 .

[76]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[77]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[78]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[79]  Dongqing Li,et al.  Electroosmotic flow with Joule heating effects. , 2004, Lab on a chip.

[80]  P. Abgrall,et al.  Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review , 2007 .

[81]  David Erickson,et al.  Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. , 2003, Journal of colloid and interface science.

[82]  Dana M Spence,et al.  Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. , 2004, The Analyst.

[83]  D. Reichmuth,et al.  Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives , 2003 .

[84]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[85]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 2. Data for polymers , 2004, Electrophoresis.

[86]  Yongan Gu,et al.  The ζ-Potential of Glass Surface in Contact with Aqueous Solutions , 2000 .

[87]  Dongqing Li Electrokinetics in Microfluidics , 2004 .

[88]  I. Rodríguez,et al.  Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices , 2005, Electrophoresis.

[89]  Sandip Ghosal,et al.  Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis , 2004, Electrophoresis.

[90]  Huihe Qiu,et al.  Integrating micromachined fast response temperature sensor array in a glass microchannel , 2005 .

[91]  O. Guenat,et al.  Partial electroosmotic pumping in complex capillary systems: Part 1: Principles and general theoretical approach , 2001 .

[92]  J. Berg,et al.  Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength , 2005, Journal of Microelectromechanical Systems.

[93]  Dhananjay Bodas,et al.  Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments , 2006 .

[94]  David J Beebe,et al.  A passive pumping method for microfluidic devices. , 2002, Lab on a chip.

[95]  S. Shoji Micro Total Analysis Systems , 1999 .

[96]  C. Meinhart,et al.  The flow structure inside a microfabricated inkjet printhead , 2000, Journal of Microelectromechanical Systems.

[97]  J. Davis Basic cell culture , 2002 .

[98]  V. Studer,et al.  An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. , 2004, The Analyst.

[99]  John P. Puccinelli,et al.  Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane , 2006 .

[100]  J. Urban,et al.  Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture , 2006, Biomedical microdevices.

[101]  Nancy Allbritton,et al.  Cross‐linked coatings for electrophoretic separations in poly(dimethylsiloxane) microchannels , 2003, Electrophoresis.

[102]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[103]  W. Tian,et al.  Introduction to Microfluidics , 2008 .

[104]  M. Laudon,et al.  Mechanical characterization of a new high-aspect-ratio near UV-photoresist , 1998 .

[105]  Ok Chan Jeong,et al.  Fabrication of a peristaltic PDMS micropump , 2005 .

[106]  P Dutta,et al.  Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. , 2001, Analytical chemistry.

[107]  Jishan Hu,et al.  A study of the performance of microfabricated electroosmotic pump , 2007 .

[108]  A. Mata,et al.  Fabrication of multi-layer SU-8 microstructures , 2006 .

[109]  A. Webb,et al.  Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry. , 2000, Analytical chemistry.

[110]  Douglas A Lauffenburger,et al.  Microfluidic shear devices for quantitative analysis of cell adhesion. , 2004, Analytical chemistry.

[111]  N.R. Aluru,et al.  Combined circuit/device modeling and simulation of integrated microfluidic systems , 2005, Journal of Microelectromechanical Systems.

[112]  Y. Takamura,et al.  Low‐voltage electroosmosis pump for stand‐alone microfluidics devices , 2003, Electrophoresis.

[113]  Abraham P. Lee,et al.  An AC Magnetohydrodynamic Microfluidic Switch for Micro Total Analysis Systems , 2003 .

[114]  Luke P. Lee,et al.  Nanoliter scale microbioreactor array for quantitative cell biology , 2006, Biotechnology and bioengineering.

[115]  Duckjong Kim,et al.  A novel approach to analysis of electroosmotic pumping through rectangular-shaped microchannels , 2006 .

[116]  Zhao-Lun Fang,et al.  Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. , 2004, Lab on a chip.

[117]  D. Beebe,et al.  PDMS absorption of small molecules and consequences in microfluidic applications. , 2006, Lab on a chip.

[118]  Dongqing Li,et al.  Analysis of electrokinetic flow in microfluidic networks , 2004 .

[119]  M. Yovanovich,et al.  Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section , 2006 .

[120]  Haifang Li,et al.  Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation. , 2006, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[121]  H. John Crabtree,et al.  Microchip injection and separation anomalies due to pressure effects. , 2001, Analytical chemistry.

[122]  S. Quake,et al.  Versatile, fully automated, microfluidic cell culture system. , 2007, Analytical chemistry.

[123]  Richard M. White,et al.  Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation , 1999 .

[124]  D. Beebe,et al.  Microenvironment design considerations for cellular scale studies. , 2004, Lab on a chip.

[125]  D. Bodas,et al.  Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation , 2007 .

[126]  Won-Gun Koh,et al.  Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors , 2006, Analytical and bioanalytical chemistry.

[127]  Gwo-Bin Lee,et al.  A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist , 2002 .

[128]  Jonathan W. Song,et al.  Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. , 2007, Analytical chemistry.

[129]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 1. Theory. , 2005, Analytical chemistry.

[130]  Sang-Hoon Lee,et al.  Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. , 2007, Lab on a chip.

[131]  G M Whitesides,et al.  Patterning cells and their environments using multiple laminar fluid flows in capillary networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Martin Richter,et al.  Robust design of gas and liquid micropumps , 1998 .

[133]  Wanjun Wang,et al.  Using megasonic development of SU-8 to yield ultra-high aspect ratio microstructures with UV lithography , 2004 .

[134]  David Sinton,et al.  Microscale flow visualization , 2004 .

[135]  Mark Bachman,et al.  Surface-directed, graft polymerization within microfluidic channels. , 2004, Analytical chemistry.

[136]  Helene Andersson,et al.  Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. , 2004, Lab on a chip.

[137]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[138]  J. Santiago,et al.  Porous glass electroosmotic pumps: design and experiments. , 2003, Journal of colloid and interface science.

[139]  Roberto Venditti,et al.  Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels , 2006 .

[140]  N. Nguyen,et al.  Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. , 2006, The Journal of chemical physics.

[141]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[142]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[143]  K. Takehara,et al.  Particle tracking techniques for electrokinetic microchannel flows. , 2002, Analytical chemistry.

[144]  Dong Sung Kim,et al.  Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. , 2006, Lab on a chip.

[145]  Michael J. Owen,et al.  Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge , 2000 .

[146]  J. G. A. Brito-Neto,et al.  Extending the lifetime of the running electrolyte in capillary electrophoresis by using additional compartments for external electrolysis. , 2005, Analytical chemistry.

[147]  Shuichi Takayama,et al.  Passively driven integrated microfluidic system for separation of motile sperm. , 2003, Analytical chemistry.

[148]  Ring-Ling Chien,et al.  Electroosmotic pumping in microchips with nonhomogeneous distribution of electrolytes , 2002, Electrophoresis.

[149]  Ren Yang,et al.  A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures , 2005 .

[150]  Albert Folch,et al.  Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. , 2005, Lab on a chip.

[151]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[152]  D. Chang,et al.  Guide to Electroporation and Electrofusion , 1991 .

[153]  Anja Boisen,et al.  Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication , 2004 .

[154]  Hossein Salimi-Moosavi,et al.  Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. , 2002, Journal of chromatography. A.

[155]  Yan Liu,et al.  Versatile 3-channel high-voltage power supply for microchip capillary electrophoresis. , 2003, Lab on a chip.

[156]  S. Wereley,et al.  Cross-correlation analysis for temperature measurement , 2002 .

[157]  R. Chien,et al.  Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis , 1991 .

[158]  E. Neumann,et al.  Electroporation and Electrofusion in Cell Biology , 1989, Springer US.

[159]  Juan G. Santiago,et al.  A planar electroosmotic micropump , 2002 .

[160]  Michael Stangegaard,et al.  A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells. , 2006, Lab on a chip.

[161]  F. Incropera,et al.  Fundamentals of Heat and Mass Transfer - Fourth edition , 1996 .

[162]  Shuichi Takayama,et al.  Handheld recirculation system and customized media for microfluidic cell culture. , 2006, Lab on a chip.

[163]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[164]  J. Voldman,et al.  Microfluidic arrays for logarithmically perfused embryonic stem cell culture. , 2006, Lab on a chip.

[165]  R. E. Oosterbroek,et al.  Lab-on-a-Chip; Miniaturized Systems for (BIO)Chemical Analysis and Synthesis , 2003 .

[166]  Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems. , 2001, Analytical chemistry.

[167]  Z. Osawa,et al.  Dynamics of Polymeric Solid Surfaces Treated with Oxygen Plasma: Effect of Aging Media after Plasma Treatment , 1998 .

[168]  M. Madou Fundamentals of microfabrication , 1997 .

[169]  Nam-Trung Nguyen,et al.  MEMS-Micropumps: A Review , 2002 .

[170]  Electroosmotic Pumps Fabricated From Porous Silicon Membranes , 2004 .

[171]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[172]  M. Owen,et al.  Hydrophobic Recovery of Plasma-Treated Polydimethylsiloxane , 1995 .

[173]  D. Erickson,et al.  Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. , 2003, Lab on a chip.

[174]  C. Culbertson,et al.  High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. , 2006, The Analyst.

[175]  S. Jacobson,et al.  Integrated system for rapid PCR-based DNA analysis in microfluidic devices. , 2000, Analytical chemistry.

[176]  Steve Arscott,et al.  Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis , 2004 .

[177]  Carlos Escobedo,et al.  Electroosmotic Flow in a Microcapillary with One Solution Displacing Another Solution , 2001 .

[178]  Qu,et al.  Electro-Viscous Effects on Liquid Flow in Microchannels. , 2001, Journal of colloid and interface science.

[179]  Lingxin Chen,et al.  Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. , 2004, Journal of chromatography. A.

[180]  Krishnendu Chakrabarty,et al.  Design automation methods and tools for microfluidics-based biochips , 2006 .

[181]  S. J. Caldwell,et al.  Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills , 1994 .

[182]  Young-Ho Cho,et al.  A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture , 2007 .

[183]  J. Weaver Electroporation theory. Concepts and mechanisms. , 1995, Methods in molecular biology.

[184]  Pieter Telleman,et al.  Microsystem Engineering of Lab-on-a-chip devices. , 2003 .

[185]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[186]  Luke P. Lee,et al.  Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. , 2005, Biotechnology and bioengineering.

[187]  T. Welton,et al.  Precise temperature control in microfluidic devices using Joule heating of ionic liquids. , 2004, Lab on a chip.

[188]  Yonghao Zhang,et al.  An analysis of induced pressure fields in electroosmotic flows through microchannels. , 2004, Journal of colloid and interface science.

[189]  M. Gaitan,et al.  Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. , 2001, Analytical chemistry.

[190]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[191]  Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye , 2006 .

[192]  O. Guenat,et al.  Partial electroosmotic pumping in complex capillary systems: Part 2: Fabrication and application of a micro total analysis system (μTAS) suited for continuous volumetric nanotitrations , 2001 .

[193]  Chunsun Zhang,et al.  PCR microfluidic devices for DNA amplification. , 2006, Biotechnology advances.

[194]  R. Nuzzo,et al.  A method for filling complex polymeric microfluidic devices and arrays. , 2001, Analytical chemistry.

[195]  Todd Thorsen,et al.  Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. , 2005, Lab on a chip.

[196]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations , 2004, Electrophoresis.

[197]  C. Henry,et al.  Conductivity detection for monitoring mixing reactions in microfluidic devices. , 2001, The Analyst.

[198]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[199]  Jörg P Kutter,et al.  Long-term stable electroosmotic pump with ion exchange membranes. , 2005, Lab on a chip.

[200]  Rui Qiao,et al.  A compact model for electroosmotic flows in microfluidic devices , 2002 .

[201]  Stephen R. Quake,et al.  A Microfabricated Rotary Pump , 2001 .

[202]  Jin Ho Kim,et al.  Surface modification of poly(dimethylsiloxane) microchannels , 2003, Electrophoresis.

[203]  Wanjun Wang,et al.  LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump , 2000 .

[204]  T. Shinbo,et al.  MEASUREMENT OF LIQUID COMPOSITION CHANGE INSIDE POLYMER GELS SHRINKING IN LIQUID MIXTURE , 2001 .

[205]  Jean-Louis Viovy,et al.  Surface treatment and characterization: Perspectives to electrophoresis and lab‐on‐chips , 2006, Electrophoresis.

[206]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[207]  Luke P. Lee,et al.  A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. , 2005, Lab on a chip.

[208]  Yi Wang,et al.  Composable Behavioral Models and Schematic-Based Simulation of Electrokinetic Lab-on-a-Chip Systems , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[209]  C. Henry,et al.  Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. , 2006, Analytical chemistry.

[210]  Ali Khademhosseini,et al.  Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. , 2005, Lab on a chip.

[211]  F. White Viscous Fluid Flow , 1974 .

[212]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[213]  Bingchu Cai,et al.  Process research of high aspect ratio microstructure using SU-8 resist , 2004 .

[214]  A. Ahluwalia,et al.  Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. , 2003, Biomaterials.

[215]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[216]  G. Stemme,et al.  Micromachined flat-walled valveless diffuser pumps , 1997 .

[217]  C. Henry,et al.  Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. , 2000, Analytical chemistry.

[218]  Sandip Ghosal Effect of analyte adsorption on the electroosmotic flow in microfluidic channels. , 2002, Analytical chemistry.

[219]  Nan-Chyuan Tsai,et al.  Review of MEMS-based drug delivery and dosing systems , 2007 .

[220]  J. Taylor The Design and Evaluation of a Microfluidic Cell Sorting Chip , 2007 .

[221]  O. Jeong,et al.  Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm , 2000 .

[222]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .