From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications.

This article reviews the regulation of production of RBCs at several levels. We focus on the regulated expansion of burst-forming unit-erythroid erythroid progenitors by glucocorticoids and other factors that occur during chronic anemia, inflammation, and other conditions of stress. We also highlight the rapid production of RBCs by the coordinated regulation of terminal proliferation and differentiation of committed erythroid colony-forming unit-erythroid progenitors by external signals, such as erythropoietin and adhesion to a fibronectin matrix. We discuss the complex intracellular networks of coordinated gene regulation by transcription factors, chromatin modifiers, and miRNAs that regulate the different stages of erythropoiesis.

[1]  H. Lodish,et al.  α4β1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development , 2007, The Journal of Cell Biology.

[2]  S. Orkin,et al.  Networking erythropoiesis , 2010, The Journal of experimental medicine.

[3]  Jennifer A. Mitchell,et al.  Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells , 2010, Nature Genetics.

[4]  H. Lodish,et al.  Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. , 2001, Blood.

[5]  C. Kellendonk,et al.  The glucocorticoid receptor is required for stress erythropoiesis. , 1999, Genes & development.

[6]  Nathaniel D. Heintzman,et al.  The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome , 2007, Cellular and Molecular Life Sciences.

[7]  H. Lodish,et al.  HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. , 2011, Blood.

[8]  F. Sablitzky,et al.  LYL-1 deficiency induces a stress erythropoiesis. , 2011, Experimental hematology.

[9]  P. Sathyanarayana,et al.  EPO receptor circuits for primary erythroblast survival. , 2008, Blood.

[10]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[11]  P. Humbert,et al.  E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. , 2006, Blood.

[12]  S. Karlsson,et al.  Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. , 2010, Blood.

[13]  P. Pandolfi,et al.  LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. , 2009, Developmental cell.

[14]  Daniel G. Tenen,et al.  Transcription factors in myeloid development: balancing differentiation with transformation , 2007, Nature Reviews Immunology.

[15]  T. Fields,et al.  Early mammalian erythropoiesis requires the Dot1L methyltransferase. , 2010, Blood.

[16]  R. Verhaak,et al.  Differential Regulation of Foxo3a Target Genes in Erythropoiesis , 2007, Molecular and Cellular Biology.

[17]  Shangqin Guo,et al.  MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. , 2008, Developmental cell.

[18]  H. Lodish,et al.  Endogenous K-ras Signaling in Erythroid Differentiation , 2007, Cell cycle.

[19]  V. Sankaran,et al.  Reversing the hemoglobin switch. , 2010, The New England journal of medicine.

[20]  H. Lodish,et al.  Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts , 2010, Haematologica.

[21]  M. Obinata,et al.  Microenvironment created by stromal cells is essential for a rapid expansion of erythroid cells in mouse fetal liver. , 1990, Development.

[22]  Shailaja N Hegde,et al.  An intronic sequence mutated in flexed-tail mice regulates splicing of Smad5 , 2007, Mammalian Genome.

[23]  Roger Patient,et al.  The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1γ , 2011, The EMBO journal.

[24]  P. Waterhouse,et al.  miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. , 2009, Blood.

[25]  Jessica Halow,et al.  The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. , 2003, Genes & development.

[26]  Jing Jiang,et al.  miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. , 2010, Genes & development.

[27]  E. Lander,et al.  MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13 , 2011, Proceedings of the National Academy of Sciences.

[28]  V. D’Agati,et al.  Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. , 1996, Genes & development.

[29]  B. Wasylyk,et al.  The p53 tumour suppressor inhibits glucocorticoid‐induced proliferation of erythroid progenitors , 2002, EMBO Reports.

[30]  Y. Sugimoto,et al.  A putative role for histone deacetylase in the differentiation of human erythroid cells. , 2005, International journal of oncology.

[31]  F. Grosveld,et al.  The human beta-globin gene 3' enhancer contains multiple binding sites for an erythroid-specific protein. , 1988, Genes & development.

[32]  D. Jackson,et al.  Visualization of focal sites of transcription within human nuclei. , 1993, The EMBO journal.

[33]  Ernest Fraenkel,et al.  Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. , 2009, Molecular cell.

[34]  H. Beug,et al.  The glucocorticoid receptor is a key regulator of the decision between self‐renewal and differentiation in erythroid progenitors , 1997, The EMBO journal.

[35]  S. Orkin,et al.  Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. , 2007, Genes & development.

[36]  R. Young,et al.  Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes. , 2011, Blood.

[37]  L. Zon,et al.  Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Biffoni,et al.  MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis , 2009, Haematologica.

[39]  M. Obinata,et al.  Spleen stromal cell lines selectively support erythroid colony formation. , 1989, Blood.

[40]  J. Zavadil,et al.  Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. , 2002, Blood cells, molecules & diseases.

[41]  K. Akashi,et al.  Mouse Development and Cell Proliferation in the Absence of D-Cyclins , 2004, Cell.

[42]  R. Young,et al.  A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells , 2007, Cell.

[43]  J. Till,et al.  Spleen-Colony Formation in Anemic Mice of Genotype WW , 1964, Science.

[44]  S. Karlsson,et al.  Smad5 is dispensable for adult murine hematopoiesis. , 2006, Blood.

[45]  P. Kingsley,et al.  Primitive erythropoiesis in the mammalian embryo. , 2010, The International journal of developmental biology.

[46]  Ruchir Shah,et al.  RNA polymerase is poised for activation across the genome , 2007, Nature Genetics.

[47]  J. Bieker,et al.  A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins , 1993, Molecular and cellular biology.

[48]  R. Paulson,et al.  BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. , 2007, Blood.

[49]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[50]  M. Yoder,et al.  Functional p85alpha gene is required for normal murine fetal erythropoiesis. , 2003, Blood.

[51]  K. Kaestner,et al.  DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival , 1998, Cell.

[52]  C. Felix,et al.  The molecular basis of leukemia. , 2004, Hematology. American Society of Hematology. Education Program.

[53]  S. Orkin,et al.  Advances in the understanding of haemoglobin switching , 2010, British journal of haematology.

[54]  Manolis Kellis,et al.  RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo , 2007, Nature Genetics.

[55]  L. Zon,et al.  TIF1γ Controls Erythroid Cell Fate by Regulating Transcription Elongation , 2010, Cell.

[56]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[57]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[58]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[59]  Steven Henikoff,et al.  Histone variants — ancient wrap artists of the epigenome , 2010, Nature Reviews Molecular Cell Biology.

[60]  H. Lodish,et al.  miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. , 2011, Genes & development.

[61]  M. Ogawa,et al.  Erythropoietic precursors in mice with phenylhydrazine‐induced anemia , 1976 .

[62]  W. Ouwehand,et al.  Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators , 2011, Developmental cell.

[63]  C. Beaumont,et al.  Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. , 2010, Blood.

[64]  Dustin E. Schones,et al.  Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. , 2009, Cell stem cell.

[65]  S. Carotta,et al.  Cooperative signaling between cytokine receptors and the glucocorticoid receptor in the expansion of erythroid progenitors: molecular analysis by expression profiling. , 2003, Blood.

[66]  Anton J. Enright,et al.  The miR-144/451 locus is required for erythroid homeostasis , 2010, The Journal of experimental medicine.

[67]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[68]  S. Karlsson,et al.  Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference , 2008, British journal of haematology.

[69]  Christine Steinhoff,et al.  The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. , 2010, Genes & development.

[70]  S. Orkin,et al.  Transcriptional regulation of erythropoiesis: an affair involving multiple partners , 2002, Oncogene.

[71]  S. Grigoryev,et al.  Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation , 2009, Chromosome Research.

[72]  S. Orkin,et al.  Update on fetal hemoglobin gene regulation in hemoglobinopathies , 2011, Current opinion in pediatrics.

[73]  Peng Ji,et al.  Formation of mammalian erythrocytes: chromatin condensation and enucleation. , 2011, Trends in cell biology.

[74]  M. Kyba,et al.  GATA2 functions at multiple steps in hemangioblast development and differentiation , 2007, Development.

[75]  Rudolf Jaenisch,et al.  Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor , 1995, Cell.

[76]  J. Palis,et al.  Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. , 1999, Development.

[77]  Manolis Kellis,et al.  Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. , 2011, Genome research.

[78]  Saijuan Chen,et al.  Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. , 2009, Blood.

[79]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[80]  R. Paulson,et al.  Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. , 2010, The Journal of clinical investigation.

[81]  R. Paulson,et al.  Hypoxia Regulates BMP4 Expression in the Murine Spleen during the Recovery from Acute Anemia , 2010, PloS one.

[82]  Xiaowu Gai,et al.  A GATA-1-regulated microRNA locus essential for erythropoiesis , 2008, Proceedings of the National Academy of Sciences.

[83]  N. Andrews,et al.  Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. , 2008, Blood.

[84]  P. Park,et al.  Differential H3K4 methylation identifies developmentally poised hematopoietic genes. , 2008, Developmental cell.

[85]  Huiling Xue,et al.  MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. , 2008, Blood.

[86]  I. Macdougall,et al.  Erythropoietins: a common mechanism of action. , 2008, Experimental hematology.

[87]  M. Weiss,et al.  Repression of c-Kit and Its Downstream Substrates by GATA-1 Inhibits Cell Proliferation during Erythroid Maturation , 2005, Molecular and Cellular Biology.

[88]  Harvey F Lodish,et al.  Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. , 2003, Blood.

[89]  Timothy L Bailey,et al.  A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. , 2010, Genome research.

[90]  H. Lodish,et al.  ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. , 2009, Blood.

[91]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[92]  H. Beug,et al.  The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. , 1999, Blood.

[93]  Y. Liu,et al.  A Key Commitment Step in Erythropoiesis Is Synchronized with the Cell Cycle Clock through Mutual Inhibition between PU.1 and S-Phase Progression , 2010, PLoS biology.

[94]  H. Lodish,et al.  Fetal Anemia and Apoptosis of Red Cell Progenitors in Stat5a−/−5b−/− Mice A Direct Role for Stat5 in Bcl-XL Induction , 1999, Cell.

[95]  R. Jensh,et al.  Bloom & Fawcett's Concise Histology , 2002 .

[96]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[97]  C. Croce,et al.  MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  B. Habermann,et al.  Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR , 2006, Oncogene.

[99]  M. Yoder,et al.  Functional p85α gene is required for normal murine fetal erythropoiesis , 2003 .

[100]  V. Broudy,et al.  Interaction of stem cell factor and its receptor c-kit mediates lodgment and acute expansion of hematopoietic cells in the murine spleen. , 1996, Blood.

[101]  S. Karlsson,et al.  Diamond-Blackfan anemia: erythropoiesis lost in translation. , 2007, Blood.

[102]  R. Paulson,et al.  BMP4 and Madh5 regulate the erythroid response to acute anemia. , 2005, Blood.

[103]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.

[104]  R. Sapolsky,et al.  How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. , 2000, Endocrine reviews.

[105]  Xiaoxia Qi,et al.  Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. , 2010, Genes & development.

[106]  R. Hardison,et al.  SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. , 2008, Blood.

[107]  J. Workman,et al.  Signals and combinatorial functions of histone modifications. , 2011, Annual review of biochemistry.

[108]  H. Lodish,et al.  Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells , 2010, Proceedings of the National Academy of Sciences.

[109]  Shailaja N Hegde,et al.  Friend Virus Utilizes the BMP4-Dependent Stress Erythropoiesis Pathway To Induce Erythroleukemia , 2007, Journal of Virology.

[110]  Shamit Soneji,et al.  Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. , 2010, Genome research.

[111]  A. R. Muir,et al.  Erythropoiesis: an electron microscopical study. , 1958, Quarterly journal of experimental physiology and cognate medical sciences.

[112]  Kirby D. Johnson,et al.  Developmental control via GATA factor interplay at chromatin domains , 2005, Journal of cellular physiology.

[113]  H. Lodish,et al.  Intracellular signaling by the erythropoietin receptor , 2009 .

[114]  Shailaja N Hegde,et al.  Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. , 2009, Blood.

[115]  H. Lodish,et al.  Down-regulation of Myc Is Essential for Terminal Erythroid Maturation* , 2010, The Journal of Biological Chemistry.