The Generic Model of Computation

Over the past two decades, Yuri Gurevich and his colleagues have formulated axiomatic foundations for the notion of algorithm, be it classical, interactive, or parallel, and formalized them in the new generic framework of abstract state machines. This approach has recently been extended to suggest a formalization of the notion of effective computation over arbitrary countable domains. The central notions are summarized herein.

[1]  Erich Grädel,et al.  Quantum Computing and Abstract State Machines , 2003, Abstract State Machines.

[2]  Nachum Dershowitz,et al.  Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday , 2008, Pillars of Computer Science.

[3]  Saul Gorn Algorithms: bisection routine , 1960, CACM.

[4]  Nachum Dershowitz,et al.  Three Paths to Effectiveness , 2010, Fields of Logic and Computation.

[5]  Margus Veanes,et al.  Toward Industrial Strength Abstract State Machines , 2001 .

[6]  Marc Spielmann,et al.  Abstract state machines: verification problems and complexity , 2000 .

[7]  Wolfram Schulte,et al.  Semantic essence of AsmL , 2003, Theor. Comput. Sci..

[8]  Stephen Cole Kleene,et al.  Reflections on Church's thesis , 1987, Notre Dame J. Formal Log..

[9]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[10]  Andreas Blass,et al.  Ordinary interactive small-step algorithms, I , 2006, TOCL.

[11]  Andreas Blass,et al.  Interactive Small-Step Algorithms I: Axiomatization , 2007, Log. Methods Comput. Sci..

[12]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[13]  Wolfram Schulte,et al.  The ABCs of specification: asml, behavior, and components , 2001, Informatica.

[14]  Saharon Shelah,et al.  On polynomial time computation over unordered structures , 2001, Journal of Symbolic Logic.

[15]  Andreas Blass,et al.  Abstract state machines capture parallel algorithms: Correction and extension , 2006, TOCL.

[16]  Yuri Gurevich,et al.  Sequential abstract-state machines capture sequential algorithms , 2000, TOCL.

[17]  Nachum Dershowitz,et al.  Exact Exploration and Hanging Algorithms , 2010, CSL.

[18]  Nachum Dershowitz,et al.  A Formalization and Proof of the Extended Church-Turing Thesis -Extended Abstract- , 2011, DCM.

[19]  Tatiana Yavorskaya,et al.  On Bounded Exploration and Bounded Nondeterminism , 2006 .

[20]  Olivier Bournez,et al.  Foundations of Analog Algorithms , 2012 .

[21]  David Harel,et al.  On folk theorems , 1980, CACM.

[22]  Nachum Dershowitz,et al.  Towards an Axiomatization of Simple Analog Algorithms , 2012, TAMC.

[23]  Egon Börger,et al.  A Mathematical Definition of Full Prolog , 1995, Sci. Comput. Program..

[24]  Wolfgang Reisig,et al.  An ASM-Characterization of a Class of Distributed Algorithms , 2009, Rigorous Methods for Software Construction and Analysis.

[25]  Hilary Putnam,et al.  Trial and error predicates and the solution to a problem of Mostowski , 1965, Journal of Symbolic Logic.

[26]  Nachum Dershowitz,et al.  A Natural Axiomatization of Computability and Proof of Church's Thesis , 2008, Bulletin of Symbolic Logic.

[27]  Egon Börger,et al.  The Origins and the Development of the ASM Method for High Level System Design and Analysis , 2002, J. Univers. Comput. Sci..

[28]  Wolfgang Reisig On Gurevich's theorem on sequential algorithms , 2003, Acta Informatica.

[29]  E. Mark Gold,et al.  Limiting recursion , 1965, Journal of Symbolic Logic.

[30]  Yuri Gurevich,et al.  Evolving algebras 1993: Lipari guide , 1995, Specification and validation methods.

[31]  Nachum Dershowitz,et al.  The Church-Turing Thesis over Arbitrary Domains , 2008, Pillars of Computer Science.

[32]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[33]  Nachum Dershowitz,et al.  When are Two Algorithms the Same? , 2008, The Bulletin of Symbolic Logic.

[34]  Andreas Blass,et al.  Interactive Small-Step Algorithms II: Abstract State Machines and the Characterization Theorem , 2007, Log. Methods Comput. Sci..

[35]  Wolfgang Reisig The computable kernel of Abstract State Machines , 2008, Theor. Comput. Sci..

[36]  Stephen Cole Kleene Mathematical Logic , 1967 .

[37]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .