Step bunching mechanism in chemical vapor deposition of 6H– and 4H–SiC{0001}

Step bunching in chemical vapor deposition of 6H– and 4H–SiC on off-oriented {0001} faces is investigated with cross-sectional transmission electron microscopy. On an off-oriented (0001)Si face, three Si–C bilayer-height steps are the most dominant on 6H–SiC and four bilayer-height steps on 4H–SiC. In contrast, single bilayer-height steps show the highest probability on a (0001)C face for both 6H– and 4H–SiC epilayers grown with a C/Si ratio of 2.0. The increase of C/Si ratio up to 5.0 induces the formation of multiple-height steps even on a C face. The bunched step height corresponds to the unit cell or the half unit cell of SiC. The mechanism of step bunching is discussed with consideration of surface formation processes.

[1]  H. Matsunami,et al.  Growth mechanism of 6H-SiC in step-controlled epitaxy , 1993 .

[2]  R. Davis,et al.  Scanning tunneling microscopy and spectroscopy of cubic β-SiC(111) surfaces , 1991 .

[3]  Phillip B. Abel,et al.  Surface morphology of silicon carbide epitaxial films , 1995 .

[4]  R. Davis,et al.  Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy , 1994 .

[5]  V. Tsvetkov,et al.  Scanning tunnelling microscopy on the 6H SiC(0001) surface , 1994 .

[6]  Tsunenobu Kimoto,et al.  Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates , 1994 .

[7]  M. Uwaha,et al.  Fluctuations and instabilities of steps in the growth and sublimation of crystals , 1995 .

[8]  A. Steckl,et al.  Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates , 1993 .

[9]  M. Kasu,et al.  Equilibrium multiatomic step structure of GaAs(001) vicinal surfaces grown by metalorganic chemical vapor deposition , 1993 .

[10]  W. Tiller,et al.  Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor , 1984 .

[11]  W. J. Choyke,et al.  Growth of high quality 6H‐SiC epitaxial films on vicinal (0001) 6H‐SiC wafers , 1990 .

[12]  J. Vance,et al.  Growth and Perfection of Crystals. , 1959 .

[13]  Richard J. Needs,et al.  The Preference of Silicon Carbide for Growth in the Metastable Cubic Form , 1991 .

[14]  P. Krishna,et al.  Polymorphism and Polytypism in Crystals , 1966 .

[15]  Ping-Keung Ko,et al.  The effects of low-angle off-axis substrate orientation on MOSFET performance and reliability , 1991 .

[16]  Robert F. Davis,et al.  Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates , 1988 .

[17]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .

[18]  H. Matsunami,et al.  Surface diffusion lengths of adatoms on 6H‐SiC{0001} faces in chemical vapor deposition of SiC , 1995 .

[19]  Sato,et al.  Morphological instability caused by asymmetry in step kinetics. , 1995, Physical review. B, Condensed matter.

[20]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[21]  H. Matsunami,et al.  Step bunching in chemical vapor deposition of 6H– and 4H–SiC on vicinal SiC(0001) faces , 1995 .