A history of chaos theory

Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms.

[1]  K. Aihara,et al.  Bifurcations in a mathematical model for circadian oscillations of clock genes. , 2006, Journal of theoretical biology.

[2]  S. Brodetsky Essai philosophique sur les probabilités , 1922, Nature.

[3]  D. Kernick Migraine — New Perspectives from Chaos Theory , 2005, Cephalalgia : an international journal of headache.

[4]  Benoit B. Mandelbrot,et al.  Les objets fractals : forme, hasard et dimension , 1989 .

[5]  A. Babloyantz,et al.  Molecules, Dynamics, and Life: An Introduction to Self-Organization of Matter , 1986 .

[6]  A. Combs,et al.  A chaotic systems analysis of the nasal cycle. , 1994, Behavioral science.

[7]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[8]  A. W. Goodspeed American Philosophical Society , 1946, Nature.

[9]  R. Taton,et al.  Book-Review - Planetary Astronomy from the Renaissance to the Rise of Astrophysics - Part a - TYCHO Brahe to Newton , 1989 .

[10]  D. Lloyd Chaos and Ultradian Rhythms , 1997 .

[11]  A. Koestler The Sleepwalkers: A History of Man's Changing Vision of the Universe , 1959 .

[12]  F. Takens,et al.  On the nature of turbulence , 1971 .

[13]  David Ruelle,et al.  Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics , 1978 .

[14]  G. Birkhoff General theory of dynamical systems , 1927 .

[15]  Colin A. Ronan,et al.  Book-Review - the Cambridge Illustrated History of the World's Science , 1983 .

[16]  Bahador Bahrami,et al.  Brain complexity increases in mania , 2005, Neuroreport.

[17]  Martin P Paulus,et al.  Chaos and schizophrenia: does the method fit the madness? , 2003, Biological Psychiatry.

[18]  A. Goldberger,et al.  Beyond the principle of similitude: renormalization in the bronchial tree. , 1986, Journal of applied physiology.

[19]  S. Drake,et al.  The controversy on the comets of 1618 , 1960 .

[20]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[21]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[22]  J. Kepler,et al.  THE HARMONY OF THE WORLD , 1997, The Invisible Universe.

[23]  Distinguishing Cardiac Randomness From Chaos , 1995, Journal of cardiovascular electrophysiology.

[24]  T. Seppänen,et al.  Novel spectral indexes of heart rate variability as predictors of sudden and non‐sudden cardiac death after an acute myocardial infarction , 2007, Annals of medicine.

[25]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[26]  C A Czeisler,et al.  Mathematical model of the human circadian system with two interacting oscillators. , 1982, The American journal of physiology.

[27]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[28]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[29]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[30]  R. Thom Halte au hasard, silence au bruit , 1980 .

[31]  Raymond M. Smullyan,et al.  What is the name of this book , 1978 .

[32]  Curtis Wilson,et al.  Planetary astronomy from the Renaissance to the rise of astrophysics , 1995 .

[33]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[34]  G. M. A Budget of Paradoxes , Nature.

[35]  A. Babloyantz,et al.  Self-organization, emerging properties, and learning , 1991 .

[36]  F. W. Schneider Molecules, dynamics and life: an introduction to self-organization of matter , 1987 .

[37]  Walter J. Freeman,et al.  Chaos and the new science of the brain , 1990 .

[38]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[39]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[40]  A. Goldbeter,et al.  Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms. , 2004, Journal of Theoretical Biology.

[41]  E. Lorenz,et al.  Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas? , 2013 .

[42]  W. Freeman The physiology of perception. , 1991, Scientific American.

[43]  I. Prigogine,et al.  The end of certainty : time, chaos, and the new laws of nature , 1997 .

[44]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[45]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.