Chaos Driven PSO with Ensemble of Priority Factors

In this paper a new approach for PSO algorithm driven by chaotic pseudorandom number generator is investigated. The ensemble learning method that has been successfully implemented in many evolutionary computational techniques is applied here for the selection of priority factors in the velocity calculations formula. The goal is to improve the performance of chaos driven PSO. The promising results are compared with previously published results of SPSO-2011 on the CEC´ 13 benchmark set.

[1]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  P. Suganthan,et al.  Differential evolution algorithm with ensemble of populations for global numerical optimization , 2009 .

[3]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  Michal Pluhacek,et al.  On the Performance of Enhanced PSO Algorithm with Dissipative Chaotic Map in the Task of High Dimensional Optimization Problems , 2013, NOSTRADAMUS.

[5]  Michal Pluhacek,et al.  Particle swarm optimization algorithm driven by multichaotic number generator , 2014, Soft Computing.

[6]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[7]  Leandro dos Santos Coelho,et al.  Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system , 2008, Appl. Soft Comput..

[8]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Mauricio Zambrano-Bigiarini,et al.  Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements , 2013, 2013 IEEE Congress on Evolutionary Computation.

[10]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[11]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[12]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[13]  Michal Pluhacek,et al.  Designing PID Controller for DC Motor by Means of Enhanced PSO Algorithm with Dissipative Chaotic Map , 2012, SOCO.

[14]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[15]  Emilio Corchado,et al.  Soft Computing Models in Industrial and Environmental Applications, 7th International Conference, SOCO'12, Ostrava, Czech Republic, September 5th-7th, 2012 , 2013, SOCO.

[16]  Ivan Zelinka,et al.  Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, Nostradamus conference 2013, Ostrava, Czech Republic, June 2013 , 2013, NOSTRADAMUS.

[17]  J. Sprott Chaos and time-series analysis , 2001 .

[18]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[19]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[20]  Ponnuthurai N. Suganthan,et al.  Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover Strategies , 2010, SEMCCO.

[21]  Mohammad Mehdi Ebadzadeh,et al.  A novel particle swarm optimization algorithm with adaptive inertia weight , 2011, Appl. Soft Comput..

[22]  Michal Pluhacek,et al.  On the behavior and performance of chaos driven PSO algorithm with inertia weight , 2013, Comput. Math. Appl..