Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries

[1]  L. Gu,et al.  Synthesis of TiOx Nanotubular Arrays with Oxygen Defects as High‐Performance Anodes for Lithium‐Ion Batteries , 2015 .

[2]  Wei Li,et al.  Improvement of charge/discharge performance for lithium ion batteries with tungsten trioxide electrodes , 2015, Microelectron. Reliab..

[3]  Q. Li,et al.  Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries. , 2015, Nanoscale.

[4]  Y. Jiao,et al.  Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance , 2014, Nano-micro letters.

[5]  Yongcai Qiu,et al.  Hierarchical WO3 flowers comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis , 2012, Nano Research.

[6]  M. Yoshio,et al.  WO3 hollow nanospheres for high-lithium storage capacity and good cyclability , 2012 .

[7]  Pawel J. Kulesza,et al.  Hexagonal nanorods of tungsten trioxide: Synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis , 2011 .

[8]  B. Tang,et al.  Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts. , 2010, Chemical communications.

[9]  J. Grunwaldt,et al.  W/Mo-Oxide Nanomaterials: Structure−Property Relationships and Ammonia-Sensing Studies† , 2010 .

[10]  J. Madarász,et al.  Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S , 2010 .

[11]  Jun Song Chen,et al.  Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities , 2010 .

[12]  G. Patzke,et al.  The interplay of crystallization kinetics and morphology in nanostructured W/Mo oxide formation: an in situ diffraction study. , 2009, Small.

[13]  J. Robichaud,et al.  Controlled Growth of WO3Nanostructures with Three Different Morphologies and Their Structural, Optical, and Photodecomposition Studies , 2009, Nanoscale research letters.

[14]  S. Balaji,et al.  Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows , 2009 .

[15]  C. Balázsi,et al.  Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3 , 2009 .

[16]  Deyan He,et al.  Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries , 2008 .

[17]  A. Szabó,et al.  Stability and Controlled Composition of Hexagonal WO3 , 2008 .

[18]  J. Grunwaldt,et al.  Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape , 2008 .

[19]  Y. Hitomi,et al.  XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3 , 2008 .

[20]  P. Bruce,et al.  Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. , 2007, Physical chemistry chemical physics : PCCP.

[21]  K. Yong,et al.  Controlled Growth and Characterization of Tungsten Oxide Nanowires Using Thermal Evaporation of WO3 Powder , 2007 .

[22]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[23]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[24]  Weiyang Li,et al.  Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. , 2006, The journal of physical chemistry. B.

[25]  Yan Yu,et al.  Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. , 2005, Angewandte Chemie.

[26]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[27]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[28]  Yong‐Mook Kang,et al.  A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery , 2005 .

[29]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[30]  L. Mai,et al.  Mo doped vanadium oxide nanotubes: microstructure and electrochemistry , 2003 .

[31]  J. Tarascon,et al.  The Electrochemical Reduction of Co3 O 4 in a Lithium Cell , 2002 .

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  Claes G. Granqvist,et al.  Progress in electrochromics: tungsten oxide revisited , 1999 .

[34]  E. Barsoukov,et al.  Effect of Low‐Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study , 1998 .

[35]  J. Dahn,et al.  Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons , 1997 .

[36]  S. Balaji,et al.  Micro‐Raman spectroscopic characterization of a tunable electrochromic device for application in smart windows , 2009 .

[37]  Imre Miklós Szilágyi,et al.  Nanosize hexagonal tungsten oxide for gas sensing applications , 2008 .

[38]  J. Grunwaldt,et al.  Morphological and Kinetic Studies on Hexagonal Tungstates , 2007 .

[39]  Yongyao Xia,et al.  Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals , 2007 .

[40]  H. Tamon,et al.  Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition , 2004 .

[41]  E. Barsoukov,et al.  Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence , 1999 .