Many-scale molecular simulation for ABS-MMT nanocomposites : Upgrading of industrial scraps

An innovative many-scale molecular modeling procedure has been developed and applied to study possible ways to improve and recycle automotive reinforced acrylonitrile–butadiene–styrene (ABS) scraps by their conversion into organoclay nanocomposites. In this work, we simulated modified organoclay exfoliation and intercalation at an atomistic level, thus providing information about the rational choice of compatibilizers and polymer insertions behavior. Phase morphology and segregation domains have then been obtained resorting to mesoscale simulation techniques. Finally, finite element calculations at micrometric level have been performed, considering the whole structure of the nanocomposite (i.e., mineral filler and polymer blend), to calculate the corresponding improvement in the mechanical properties. Output data, such as phase morphologies and mechanical properties, have been validated against experimental data available in literature, finding good agreements. The proposed procedure relies solely on input data obtained by molecular simulations, exception made for the experimental value of the Young modulus of the filler. Accordingly, our computational recipe constitutes a sort of innovative, atomistic-based, step-by-step procedure, in which each level calculations yield information necessary to perform simulation at the next, higher level length/time scale.

[1]  R. E. Smallman,et al.  An assessment of high voltage electron microscopy (HVEM). An invited review , 1977 .

[2]  Andrei A. Gusev,et al.  Effect of Particle Agglomeration on the Elastic Properties of Filled Polymers , 2002 .

[3]  Maurizio Fermeglia,et al.  PET/PEN blends of industrial interest as barrier materials. Part I. Many-scale molecular modeling of PET/PEN blends , 2006 .

[4]  L. Goettler,et al.  Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling ☆ , 2002 .

[5]  P. Flory Principles of polymer chemistry , 1953 .

[6]  Jozef Bicerano,et al.  Prediction of Polymer Properties , 1996 .

[7]  Maurizio Fermeglia,et al.  Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study. , 2006, Biomacromolecules.

[8]  V. Milman,et al.  Elastic properties of TiB2 and MgB2 , 2001 .

[9]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[10]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[11]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[12]  D. R. Paul,et al.  Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: a model system for ABS nanocomposites , 2005 .

[13]  Maurizio Fermeglia,et al.  Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation , 2004 .

[14]  P. Coveney,et al.  Morphology and elastic modulus of novel poly[oligo(ethylene glycol) diacrylate]‐montmorillonite nanocomposites , 2005 .

[15]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[16]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[17]  Maurizio Fermeglia,et al.  Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .

[18]  J. G. Ribelles,et al.  Dynamic mechanical properties of polycarbonate and acrylonitrile–butadiene–styrene copolymer blends , 2002 .

[19]  Maurizio Fermeglia,et al.  Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .

[20]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[21]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[22]  W. Fan,et al.  Self‐assembly of polycarbonate/acrylonitrile–butadiene–styrene/montmorillonite nanocomposites , 2003 .

[23]  Maurizio Fermeglia,et al.  Equation‐of‐state parameters for pure polymers by molecular dynamics simulations , 1999 .

[24]  W. Fan,et al.  Flammability and thermal stability studies of ABS/Montmorillonite nanocomposite , 2003 .

[25]  J. Crain,et al.  Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures , 1997 .

[26]  Andrei A. Gusev,et al.  Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites , 2002 .