Many-scale molecular simulation for ABS-MMT nanocomposites : Upgrading of industrial scraps
暂无分享,去创建一个
Maurizio Fermeglia | Sabrina Pricl | Giulio Scocchi | Paolo Cosoli | M. Fermeglia | S. Pricl | G. Scocchi | P. Cosoli
[1] R. E. Smallman,et al. An assessment of high voltage electron microscopy (HVEM). An invited review , 1977 .
[2] Andrei A. Gusev,et al. Effect of Particle Agglomeration on the Elastic Properties of Filled Polymers , 2002 .
[3] Maurizio Fermeglia,et al. PET/PEN blends of industrial interest as barrier materials. Part I. Many-scale molecular modeling of PET/PEN blends , 2006 .
[4] L. Goettler,et al. Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling ☆ , 2002 .
[5] P. Flory. Principles of polymer chemistry , 1953 .
[6] Jozef Bicerano,et al. Prediction of Polymer Properties , 1996 .
[7] Maurizio Fermeglia,et al. Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study. , 2006, Biomacromolecules.
[8] V. Milman,et al. Elastic properties of TiB2 and MgB2 , 2001 .
[9] N. Maurits,et al. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .
[10] A. A. Gusev. Representative volume element size for elastic composites: A numerical study , 1997 .
[11] J. Fraaije,et al. Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .
[12] D. R. Paul,et al. Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: a model system for ABS nanocomposites , 2005 .
[13] Maurizio Fermeglia,et al. Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation , 2004 .
[14] P. Coveney,et al. Morphology and elastic modulus of novel poly[oligo(ethylene glycol) diacrylate]‐montmorillonite nanocomposites , 2005 .
[15] P. Dubois,et al. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .
[16] Andrei A. Gusev,et al. Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .
[17] Maurizio Fermeglia,et al. Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .
[18] J. G. Ribelles,et al. Dynamic mechanical properties of polycarbonate and acrylonitrile–butadiene–styrene copolymer blends , 2002 .
[19] Maurizio Fermeglia,et al. Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .
[20] Natasha Maurits,et al. The MesoDyn project: software for mesoscale chemical engineering , 1999 .
[21] Ulrich W. Suter,et al. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .
[22] W. Fan,et al. Self‐assembly of polycarbonate/acrylonitrile–butadiene–styrene/montmorillonite nanocomposites , 2003 .
[23] Maurizio Fermeglia,et al. Equation‐of‐state parameters for pure polymers by molecular dynamics simulations , 1999 .
[24] W. Fan,et al. Flammability and thermal stability studies of ABS/Montmorillonite nanocomposite , 2003 .
[25] J. Crain,et al. Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures , 1997 .
[26] Andrei A. Gusev,et al. Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites , 2002 .