Automatic Feature Induction for Stagewise Collaborative Filtering

Recent approaches to collaborative filtering have concentrated on estimating an algebraic or statistical model, and using the model for predicting missing ratings. In this paper we observe that different models have relative advantages in different regions of the input space. This motivates our approach of using stagewise linear combinations of collaborative filtering algorithms, with non-constant combination coefficients based on kernel smoothing. The resulting stagewise model is computationally scalable and outperforms a wide selection of state-of-the-art collaborative filtering algorithms.

[1]  Xiaoyuan Su,et al.  Hybrid Collaborative Filtering Algorithms Using a Mixture of Experts , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[2]  Yihong Gong,et al.  Fast nonparametric matrix factorization for large-scale collaborative filtering , 2009, SIGIR.

[3]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[4]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[5]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[6]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[7]  Joseph Sill,et al.  Feature-Weighted Linear Stacking , 2009, ArXiv.

[8]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[9]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[10]  Mingxuan Sun,et al.  Estimating probabilities in recommendation systems , 2010, AISTATS.

[11]  Qiang Yang,et al.  Scalable collaborative filtering using cluster-based smoothing , 2005, SIGIR '05.

[12]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[13]  Paul N. Bennett Neighborhood-Based Local Sensitivity , 2007, ECML.

[14]  Christopher J. Merz,et al.  Dynamical Selection of Learning Algorithms , 1995, AISTATS.

[15]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[16]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[17]  Neil D. Lawrence,et al.  Non-linear matrix factorization with Gaussian processes , 2009, ICML '09.

[18]  Mingxuan Sun,et al.  A Comparative Study of Collaborative Filtering Algorithms , 2012, Proceedings of the International Conference on Knowledge Discovery and Information Retrieval.

[19]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[20]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[21]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[22]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[23]  Yehuda Koren,et al.  Factor in the neighbors: Scalable and accurate collaborative filtering , 2010, TKDD.

[24]  Guillaume Bouchard,et al.  Robust Bayesian Matrix Factorisation , 2011, AISTATS.

[25]  Mingxuan Sun,et al.  PREA: personalized recommendation algorithms toolkit , 2012, J. Mach. Learn. Res..

[26]  Dennis DeCoste,et al.  Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations , 2006, ICML.

[27]  D. Heckerman,et al.  Dependency networks for inference , 2000 .

[28]  Robert E. Schapire,et al.  How boosting the margin can also boost classifier complexity , 2006, ICML.

[29]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[30]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[31]  Kevin W. Bowyer,et al.  Combination of multiple classifiers using local accuracy estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[33]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[34]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.