Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas.

We propose novel plasmonic tweezers based on silver V-type nanoantennas placed on a conducting ground layer, which can effectively mitigate the plasmonic heating effect and thus enable subwavelength plasmonic trapping in the near-infrared region. Using the centroid algorithm to analyze the motion of trapped spheres, we can experimentally extract the value of optical trapping potential. The result confirms that the plasmonic tweezers have a dual-mode subwavelength trapping capability when the incident laser beam is linearly polarized along two orthogonal directions. We have also performed full-wave simulations, which agree with the experimental data very well in terms of spectral response and trapping potential. It is expected that the dual-mode subwavelength trapping can be used in non-contact manipulations of a single nanoscale object, such as a biomolecule or quantum dot, and find important applications in biology, life science, and applied physics.

[1]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[2]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[3]  Lambertus Hesselink,et al.  Nano-optical conveyor belt, part I: Theory. , 2014, Nano letters.

[4]  Lambertus Hesselink,et al.  Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps. , 2014, Nano letters.

[5]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[6]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[7]  D. Grier A revolution in optical manipulation , 2003, Nature.

[8]  Alexandra Boltasseva,et al.  Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. , 2016, Nature nanotechnology.

[9]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[10]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[11]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[12]  Amr A E Saleh,et al.  Nanoscopic control and quantification of enantioselective optical forces , 2017, Nature nanotechnology.

[13]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[14]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[15]  Ting Lei,et al.  Focused plasmonic trapping of metallic particles , 2013, Nature Communications.

[16]  Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation. , 2017, Optics letters.

[17]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[18]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[19]  H. Ho,et al.  Nano-optical conveyor belt with waveguide-coupled excitation. , 2016, Optics letters.

[20]  Hiroshi Masuhara,et al.  Resonance optical trapping of individual dye-doped polystyrene particles with blue- and red-detuned lasers. , 2017, Optics express.

[21]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[22]  S. Tjin,et al.  Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives , 2017 .

[23]  Christopher V. Rao,et al.  High-resolution, long-term characterization of bacterial motility using optical tweezers , 2009, Nature Methods.

[24]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[25]  M. Kamenetska,et al.  An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. , 2017, Nano letters.

[26]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[27]  Keiji Sasaki,et al.  Nanostructured potential of optical trapping using a plasmonic nanoblock pair. , 2013, Nano letters.

[28]  Sebastian J Maerkl,et al.  Integration of plasmonic trapping in a microfluidic environment. , 2009, Optics express.