Reliable stabilizing controller based on set-value parameter synthesis

A set-membership (SM) approach is proposed to design reliable static stabilizing controllers for non-linear dynamical systems. First, the control design problem is reformulated as a parameter identification issue in an unknown-but-bounded error framework. Then, a new dual set integration method for reachability computation is introduced. Finally, the latter dual method is used in conjunction with set inversion techniques via interval analysis, in order to develop an SM parameter estimation algorithm to solve the control design problem. The identified feedback control must achieve two aims. The first aim is that, starting from a given bounded set of initial states, the state trajectories generated by the controlled non-linear system have to reach in a finite-time a desired target set. The second aim is to ensure asymptotic stability of the controlled system over the target set. The effectiveness of the proposed method is illustrated through a complex non-linear system.

[1]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[2]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[3]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[4]  Roumen Anguelov,et al.  Wrapping Effect and Wrapping Function , 1998, Reliab. Comput..

[5]  Nacim Meslem,et al.  Atteignabilité hybride des systèmes dynamiques continus par analyse par intervalles : application à l'estimation ensembliste , 2008 .

[6]  Richard D. Neidinger,et al.  Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming , 2010, SIAM Rev..

[7]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[8]  Paul I. Barton,et al.  Bounds on the reachable sets of nonlinear control systems , 2013, Autom..

[9]  Nacim Meslem,et al.  Set-Membership Identification of Continuous-Time Systems , 2006 .

[10]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[11]  Youdong Lin,et al.  Guaranteed State and Parameter Estimation for Nonlinear Continuous-Time Systems with Bounded-Error Measurements , 2007 .

[12]  Jean-Luc Gouzé,et al.  Estimation of uncertain models of activated sludge processes with interval observers , 2001 .

[13]  Yelena M. Smagina,et al.  Using interval arithmetic for robust state feedback design , 2002, Syst. Control. Lett..

[14]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[15]  Nacim Meslem,et al.  A Hybrid Bounding Method for Computing an Over-Approximation for the Reachable Set of Uncertain Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[16]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[17]  Nacim Meslem,et al.  Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization , 2008, HSCC.

[18]  A. M. Sahlodin,et al.  Convex/concave relaxations of parametric ODEs using Taylor models , 2011, Comput. Chem. Eng..

[19]  A. Isidori Nonlinear Control Systems , 1985 .

[20]  Wolfgang Walter,et al.  Differential inequalities and maximum principles: theory, new methods, and applications , 1997 .

[21]  Liming Wang,et al.  Conditions for global stability of monotone tridiagonal systems with negative feedback , 2010, Syst. Control. Lett..

[22]  Luc Jaulin,et al.  An Interval Approach for Stability Analysis: Application to Sailboat Robotics , 2013, IEEE Transactions on Robotics.

[23]  Marcelo M. Cavalcanti,et al.  Uniform Decay Rates for the Wave Equation with Nonlinear Damping Locally Distributed in Unbounded Domains with Finite Measure , 2014, SIAM J. Control. Optim..

[24]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[25]  Nacim Meslem,et al.  Guaranteed Parameter Set Estimation for Monotone Dynamical Systems Using Hybrid Automata , 2010, Reliab. Comput..

[26]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[27]  Robert Rihm Implicit Methods for Enclosing Solutions of ODEs , 1998, J. Univers. Comput. Sci..

[28]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[29]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[30]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1998, SCAN.

[31]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[32]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..

[33]  Olivier Bernard,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007, 2007 European Control Conference (ECC).

[34]  M. Hirsch,et al.  Chapter 4 Monotone Dynamical Systems , 2006 .

[35]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[36]  Y. Candau,et al.  Computing reachable sets for uncertain nonlinear monotone systems , 2010 .

[37]  Balasaheb M. Patre,et al.  Robust State Feedback for Interval Systems: An Interval Analysis Approach , 2010, Reliab. Comput..

[38]  V. N. Shashikhin Robust stabilization of linear interval systems , 2002 .