Physical modelling of microwave field effect transistors: a review

The accurate modelling of GaAs FETs and related heterojunction structures requires that a number of physical phenomena and technological parameters be considered. Among these, electron dynamics in a two-dimensional gas, the influence of deep traps in substrates and AlGaAs layers, the source parasitic access impedance, surface potential effect, and velocity overshoot in submicrometer devices are of interest. A series of simulation models exist which can take a number of these effects into consideration in a more or less accurate way: the Monte Carlo or particle models, the two-dimensional solving methods for semiconductor equations, and the simpler one-dimensional or analytical models. These are reviewed and their main ranges of applicability are compared and discussed.<<ETX>>

[1]  M. Tomizawa,et al.  Modeling for an AlGaAs/GaAs heterostructure device using Monte Carlo simulation , 1985, IEEE Electron Device Letters.

[2]  M. Shur,et al.  Inverted GaAs/AlGaAs modulation-doped field-effect transistors with extremely high transconductances , 1986, IEEE Electron Device Letters.

[3]  R. Warriner,et al.  Computer simulation of gallium arsenide field-effect transistors using Monte-Carlo methods , 1977 .

[4]  J. Frey,et al.  Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFET's , 1982, IEEE Transactions on Electron Devices.

[5]  U. Ravaioli,et al.  MODFET Ensemble Monte Carlo model including the quasi-two-dimensional electron gas , 1986, IEEE Transactions on Electron Devices.

[6]  K. Hess,et al.  Two-dimensional transient simulation of an idealized high electron mobility transistor , 1985, IEEE Transactions on Electron Devices.

[7]  S. Hiyamizu,et al.  A New Heterostructure for 2DEG System with a Si Atomic-Planar-Doped AlAs–GaAs–AlAs Quantum Well Structure Grown by MBE , 1985 .

[8]  O. Elsayed,et al.  Performance analysis of sub-micron gate GaAs MESFETs , 1987 .

[9]  Alain Cappy,et al.  Frequency dependence of source access resistance of heterojunction field-effect transistor , 1985 .

[10]  P. Saunier,et al.  High-efficiency millimeter-wave GaAs/GaAlAs power HEMT's , 1986, IEEE Electron Device Letters.

[11]  B.R. Lee,et al.  Advances in HEMT Technology and Applications , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[12]  G. Salmer,et al.  Two-dimensional simulation of submicrometer GaAs MESFETs: surface effects and optimization of recessed gate structures , 1988 .

[13]  P. Lugli,et al.  Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors , 1985, IEEE Transactions on Electron Devices.

[14]  M. Shur,et al.  Ballistic and near ballistic transport in GaAs , 1980, IEEE Electron Device Letters.

[15]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[16]  J.Y.-F. Tang,et al.  Two-dimensional simulation of MODFET and GaAs gate heterojunction FET's , 1985, IEEE Transactions on Electron Devices.

[17]  H. Morkoc,et al.  Microwave performance of InAlAs/InGaAs/InP MODFET's , 1987, IEEE Electron Device Letters.

[18]  Y. Hayashi,et al.  n+ -GaAs/undoped GaAlAs/undoped GaAs field-effect transistor , 1984 .

[19]  Yong-Hoon Yun,et al.  A temperature model for the GaAs MESFET , 1981, IEEE Transactions on Electron Devices.

[20]  M. Mizuta,et al.  Direct Evidence for the DX Center Being a Substitutional Donor in AlGaAs Alloy System , 1985 .

[21]  K. Ohata,et al.  High Performance (AlAs/n-GaAs Superlattice)/GaAs 2DEGFETs with Stabilized Threshold Voltage , 1984 .

[22]  Y. Crosnier,et al.  Theoretical analysis of the DC avalanche breakdown in GaAs MESFET's , 1983, IEEE Transactions on Electron Devices.

[23]  A. Cappy,et al.  Noise modeling in submicrometer-gate two-dimensional electron-gas field-effect transistors , 1985, IEEE Transactions on Electron Devices.

[24]  C. Moglestue Computer simulation of a dual gate GaAs field-effect transistor using the Monte Carlo method , 1979 .

[25]  M. Shur,et al.  Novel multilayer modulation doped (Al,Ga)As/GaAs structures for self-aligned gate FETs , 1984 .

[26]  M. I. Aksun,et al.  Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor , 1986, IEEE Electron Device Letters.

[27]  D. Loret Two-dimensional numerical model for the high electron mobility transistor , 1987 .

[28]  T. Itoh,et al.  Inverted-Gate GaAs Mesfet Characteristics , 1987, 1987 17th European Microwave Conference.

[29]  Christopher M. Snowden Modelling III-V semiconductor of devices , 1987 .

[30]  W. Kopp,et al.  High transconductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors , 1985, IEEE Electron Device Letters.

[31]  E. Constant,et al.  Modeling of a submicrometer gate field‐effect transistor including effects of nonstationary electron dynamics , 1980 .

[32]  P. Wolf,et al.  Scaled GaAs MESFET's with gate length down to 100 nm , 1986, IEEE Electron Device Letters.

[33]  C. Snowden,et al.  Two-dimensional hot-electron models for short-gate-length GaAs MESFET's , 1987, IEEE Transactions on Electron Devices.