The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle

The long‐term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth's climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz's conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a self‐feedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars.

[1]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[2]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  T. Long,et al.  RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE. , 1903 .

[4]  G. H. B. Vorlesungen über die Theorie der Wärmestrahlung , 1913, Nature.

[5]  Lord Rayleigh,et al.  LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side , 1916 .

[6]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[7]  A. Chattopadhyay,et al.  Heat and Thermodynamics , 1952 .

[8]  Ludwig von Bertalanffy,et al.  Ètude thermodynamique des phénomènes irréversibles , 1949, Nature.

[9]  W. Malkus,et al.  The heat transport and spectrum of thermal turbulence , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  I. Prigogine,et al.  Sur les propriétés différentielles de la production d'entropie , 1954 .

[11]  Edward N. Lorenz,et al.  Available Potential Energy and the Maintenance of the General Circulation , 1955 .

[12]  R. Wildt Radiative Transfer and Thermodynamics. , 1956 .

[13]  W. Malkus,et al.  Outline of a theory of turbulent shear flow , 1956, Journal of Fluid Mechanics.

[14]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[15]  Edward N. Lorenz,et al.  GENERATION OF AVAILABLE POTENTIAL ENERGY AND THE INTENSITY OF THE GENERAL CIRCULATION , 1960 .

[16]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[17]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[18]  Louis N. Howard,et al.  Heat transport by turbulent convection , 1963, Journal of Fluid Mechanics.

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  P. Glansdorff,et al.  On a general evolution criterion in macroscopic physics , 1964 .

[21]  Edward N. Lorenz,et al.  The nature and theory of the general circulation of the atmosphere , 1967 .

[22]  K. Oswatitsch,et al.  Ermittlung stationärer schallnaher Strömungen im Absteigeverfahren aus dem Instationären , 1968 .

[23]  F. Busse On Howard's upper bound for heat transport by turbulent convection , 1969, Journal of Fluid Mechanics.

[24]  F. H. Busse,et al.  Bounds for turbulent shear flow , 1970, Journal of Fluid Mechanics.

[25]  William W. Kellogg,et al.  Man's impact on the climate , 1971 .

[26]  L. Howard,et al.  Bounds on Flow Quantities , 1972 .

[27]  J. Lovelock Gaia as seen through the atmosphere , 1972 .

[28]  J. Dutton The global thermodynamics of atmospheric motion , 1973 .

[29]  G. W. Paltridge,et al.  Global dynamics and climate - a system of minimum entropy exchange , 1975 .

[30]  L. Schulman A Theoretical Study of the Efficiency of the General Circulation , 1977 .

[31]  Edward N. Lorenz Available energy and the maintenance of a moist circulation , 1977 .

[32]  F. Busse The Optimum Theory of Turbulence , 1978 .

[33]  G. Paltridge,et al.  The steady‐state format of global climate , 1978 .

[34]  G. Paltridge,et al.  Climate and thermodynamic systems of maximum dissipation , 1979, Nature.

[35]  P. Landsberg,et al.  Thermodynamics of the conversion of diluted radiation , 1979 .

[36]  H. G. Fortak Entropy and Climate , 1979 .

[37]  Catherine Nicolis,et al.  On the entropy balance of the earth‐atmosphere system , 1980 .

[38]  E. Jaynes The Minimum Entropy Production Principle , 1980 .

[39]  G. J. Shutts,et al.  Maximum entropy production states in quasi‐geostrophic dynamical models , 1981 .

[40]  Yasuji Sawada,et al.  A Thermodynamic Variational Principle in Nonlinear Non-Equilibrium Phenomena , 1981 .

[41]  G. Paltridge,et al.  A model for energy dissipation at the mantle—core boundary , 1981 .

[42]  G. Paltridge,et al.  Thermodynamic dissipation and the global climate system , 1981 .

[43]  Stephen Mobbs,et al.  Extremal principles for global climate models , 1982 .

[44]  C. Lin An extremal principle for a one‐dimensional climate model , 1982 .

[45]  Chen Shi-gang,et al.  PHENOMENON OF WAVE-LENGTH INCREASE IN RAYLEIGH-BéNARD CONVECTION AND CRITERION OF MAXIMUM ENTROPY PRODUCTION , 1983 .

[46]  J. Peixoto,et al.  Global Angular Momentum and Energy Balance Requirements from Observations , 1983 .

[47]  I. Aoki Entropy Productions on the Earth and Other Planets of the Solar System , 1983 .

[48]  Y. Sawada,et al.  Relative stabilities of metastable states of convecting charged-fluid systems by computer simulation , 1983 .

[49]  Akira Noda,et al.  Climates at minima of the entropy exchange rate , 1983 .

[50]  J. Peixoto,et al.  Physics of climate , 1984 .

[51]  Christopher Essex,et al.  Radiation and the Irreversible Thermodynamics of Climate , 1984 .

[52]  R. Ulanowicz,et al.  Life and the production of entropy , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  P. Wyant,et al.  Determination of the Heat-Transport Coefficient in Energy-Balance Climate Models by Extremization of Entropy Production , 1988 .

[54]  V. Bǎdescu,et al.  On the thermodynamics of the conversion of diluted radiation , 1989 .

[55]  L. François,et al.  The maximum entropy production principle in climate models : application to the faint young sun paradox , 1990 .

[56]  G. Lesins On the relationship between radiative entropy and temperature distributions , 1990 .

[57]  Robert Benjamin Lee,et al.  Earth Radiation Budget Experiment , 1990 .

[58]  F. Herbert,et al.  Radiation and entropy , 1990 .

[59]  J. Peixoto,et al.  Entropy budget of the atmosphere , 1991 .

[60]  Swinney,et al.  Transition to shear-driven turbulence in Couette-Taylor flow. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[61]  Graeme L. Stephens,et al.  Entropy and climate. I - ERBE observations of the entropy production of the earth , 1993 .

[62]  Eric A. Smith,et al.  Energy transports by ocean and atmosphere based on an entropy extremum principle. I - Zonal averaged transports , 1993 .

[63]  J. Li,et al.  気候モデルにおけるエントロピー 1 大気のエントロピー生産の垂直構造 , 1994 .

[64]  L. Beda Thermal physics , 1994 .

[65]  P. Chylek,et al.  Entropy in Climate Models. Part II: Horizontal Structure of Atmospheric Entropy Production , 1994 .

[66]  Eric A. Smith,et al.  Energy transports by ocean and atmosphere based on an entropy extremum principle. Part II: Two-dimensional transports , 1994 .

[67]  G. Kuiken Thermodynamics of Irreversible Processes: Applications to Diffusion and Rheology , 1994 .

[68]  W. Weiss The balance of entropy on earth , 1994 .

[69]  W. Muschik Thermodynamics of Irreversible Processes. Applications to Diffusion and Rheology , 1995 .

[70]  G. Stephens,et al.  Entropy and climate. II: Simple models , 1995 .

[71]  Original Article The balance of entropy on earth , 1996 .

[72]  W. Abdou,et al.  Reversible and irreversible sources of radiation entropy , 1996 .

[73]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[74]  Atsumu Ohmura,et al.  Thermodynamics of a Global-Mean State of the Atmosphere—A State of Maximum Entropy Increase , 1997 .

[75]  D. O'Brien A yardstick for global entropy‐flux , 1997 .

[76]  Hisashi Ozawa THERMODYNAMICS OF FROST HEAVING : A THERMODYNAMIC PROPOSITION FOR DYNAMIC PHENOMENA , 1997 .

[77]  Nilton O. Renno,et al.  Multiple equilibria in radiative-convective atmospheres , 1997 .

[78]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[79]  J. E. Llebot,et al.  Extremal principle of entropy production in the climate system , 1999 .

[80]  C. Nicolis,et al.  Entropy production and dynamical complexity in a low‐order atmospheric model , 1999 .

[81]  J. E. Llebot,et al.  Second differential of the entropy as a criterion for the stability in low‐dimensional climate models , 1999 .

[82]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[83]  Extremal climatic states simulated by a 2-dimensional model Part II: Different climatic scenarios , 2000 .

[84]  T. Pujol,et al.  Extremal climatic states simulated by a 2-dimensional model Part I: Sensitivity of the model and present state , 2000 .

[85]  V. Balaji,et al.  Frictional Dissipation in a Precipitating Atmosphere , 2000 .

[86]  S. Minobe,et al.  Plume Structures in Deep Convection of Rotating Fluid , 2000 .

[87]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[88]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[89]  R. Dewar Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states , 2000, cond-mat/0005382.

[90]  O. Pauluis Entropy budget of an atmosphere in radiative-convective equilibrium , 2000 .

[91]  Shinya Shimokawa,et al.  On the thermodynamics of the oceanic general circulation: entropy increase rate of an open dissipative system and its surroundings , 2001 .

[92]  G. Paltridge,et al.  A physical basis for a maximum of thermodynamic dissipation of the climate system , 2001 .

[93]  R. Lorenz Correction to “Titan, Mars and Earth: Entropy production by latitudinal heat transport” , 2001 .

[94]  Ralph D. Lorenz,et al.  Titan, Mars and Earth : Entropy production by latitudinal heat transport , 2001 .

[95]  R. Lorenz Of Course Ganymede and Callisto Have Oceans: Application of a Principle of Maximum Entropy Production to Icy Satellite Convection , 2001 .

[96]  H Ozawa,et al.  Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Ralph D. Lorenz,et al.  Planets, life and the production of entropy , 2002, International Journal of Astrobiology.

[98]  Shinya Shimokawa,et al.  On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production , 2002 .

[99]  Jeff Wallach Driven to extremes , 2002 .

[100]  T. DelSole Entropy as a basis for comparing and blending forecasts , 2002 .

[101]  H. Woo Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Ralph D. Lorenz,et al.  Maximum Frictional Dissipation and the Information Entropy of Windspeeds , 2002 .

[103]  R. Lorenz,et al.  Work output of planetary atmospheric engines: dissipation in clouds and rain , 2002 .

[104]  T. Pujol,et al.  States of maximum entropy production in a onedimensional vertical model with convective adjustment , 2002 .

[105]  I. Held,et al.  Entropy budget of an atmosphere in radiative-convective equilibrium , 2000 .

[106]  T. Pujol Eddy Heat Diffusivity at Maximum Dissipation in a Radiative-convective One-dimensional Climate Model , 2003 .

[107]  R. Lorenz Full Steam Ahead--Probably , 2003, Science.