Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain
暂无分享,去创建一个
Maria Isabel Dias | Jorge Sanjurjo-Sánchez | M. Dias | M. J. Trindade | J. Sanjurjo-Sánchez | C. I. Burbidge | Rebeca Blanco-Rotea | R. Benavides Garcia | D. Fernández Mosquera | Maria Isabel Prudêncio | Rebeca Blanco-Rotea | C. Burbidge | D. Mosquera | R. García | M. Prudencio | Christopher Ian Burbidge
[1] G. M. Crisci,et al. PROVENANCE OF THE LIMESTONE USED IN TEOTIHUACAN (MEXICO): A METHODOLOGICAL APPROACH* , 2009 .
[2] T. B. Nolan,et al. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale , 1964 .
[3] Ioanna Papayianni,et al. Investigative methods for the characterisation of historic mortars—Part 1: Mineralogical characterisation , 2005 .
[4] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[5] José M. Álvarez,et al. A study of the ancient mortars in the north tower of Pamplona's San Cernin church , 2000 .
[6] R. Korotev. A SELF‐CONSISTENT COMPILATION OF ELEMENTAL CONCENTRATION DATA FOR 93 GEOCHEMICAL REFERENCE SAMPLES , 1996 .
[7] M. Gouveia,et al. New Data on Sixteen Reference Materials Obtained by INAA , 2000 .
[8] Antonia Moropoulou,et al. Investigation of the technology of historic mortars , 2000 .
[9] J. Hughes,et al. The petrography and microstructure of medieval lime mortars from the west of Scotland: Implications for the formulation of repair and replacement mortars , 2000 .
[10] M. Ángeles,et al. Iglesias tardoantiguas y altomedievales en la Península Ibérica. Análisis arqueológico y sistemas de abovedamiento , 2005 .
[11] G. Baronio,et al. Investigative methods for the characterisation of historic mortars—Part 2: Chemical characterisation , 2005 .
[12] Jan Elsen,et al. Microscopy of historic mortars—a review , 2006 .
[13] Pierre E. Biscaye,et al. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans , 1965 .
[14] K. Govindaraju,et al. 1994 compilation of working values and sample description for 383 geostandards , 1994 .
[15] I. Meir,et al. Analysis of Byzantine mortars from the Negev Desert, Israel, and subsequent environmental and economic implications , 2005 .
[16] K. Govindaraju,et al. 1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .
[17] F. Rocha,et al. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the 'Argilas de Aveiro' Formation (Portugal) , 1999 .
[18] M. Insausti,et al. GEOCHEMICAL CHARACTERIZATION OF ARCHAEOLOGICAL LIME MORTARS: PROVENANCE INPUTS* , 2008 .
[19] A. Pazdur,et al. APPLICATION OF RADIOCARBON METHOD FOR DATING OF LIME MORTARS , 2005 .
[20] Rebeca Blanco-Rotea,et al. Evolución constructiva de Santa Eulalia de Bóveda (Lugo, Galicia) , 2009 .
[21] M. Garcia‐Valles,et al. DATING ANCIENT LIME MORTARS BY GEOCHEMICAL AND MINERALOGICAL ANALYSIS , 1996 .
[22] Antonia Moropoulou,et al. Physico-chemical study of Cretan ancient mortars , 2003 .
[23] F. Casadio,et al. EVALUATION OF BINDER/AGGREGATE RATIOS IN ARCHAEOLOGICAL LIME MORTARS WITH CARBONATE AGGREGATE: A COMPARATIVE ASSESSMENT OF CHEMICAL, MECHANICAL AND MICROSCOPIC APPROACHES* , 2005 .