Unusual Novel SnoRNA-Like RNAs in Drosophila melanogaster

A computational screen for novel small nucleolar RNAs in Drosophila melanogaster uncovered 15 novel snoRNAs and snoRNA-like long non-coding RNAs. In contrast to earlier surverys, the novel sequences are mostly poorly conserved and originate from unusual genomic locations. The majority derive from precurors antisense to well-known protein-coding genes, and four of the candidates are produced from exon-coding regions. Only a minority of the new sequences appears to have canonical target sites in ribosomal or small nuclear RNAs. Taken together, these evolutionary young, poorly conserved, and genomically atypical sequences point at a class of snoRNA-like transcripts with predominantly regulatory functions in the fruit fly genome.

[1]  P. Stadler,et al.  Developmentally regulated expression and expression strategies of Drosophila snoRNAs. , 2015, Insect biochemistry and molecular biology.

[2]  E. Wolf,et al.  snoRNAs are a novel class of biologically relevant Myc targets , 2015, BMC Biology.

[3]  A. Sandelin,et al.  Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes , 2014, Genes & development.

[4]  M. Miura,et al.  The Drosophila TNF ortholog Eiger: emerging physiological roles and evolution of the TNF system. , 2014, Seminars in immunology.

[5]  B. Rogelj,et al.  The many faces of small nucleolar RNAs. , 2014, Biochimica et biophysica acta.

[6]  Ling-Ling Chen,et al.  Species-specific alternative splicing leads to unique expression of sno-lncRNAs , 2014, BMC Genomics.

[7]  J. Brosius,et al.  Alternative Processing as Evolutionary Mechanism for the Origin of Novel Nonprotein Coding RNAs , 2013, Genome biology and evolution.

[8]  A. Tonevitsky,et al.  New functions of small nucleolar RNAs , 2013, Biochemistry (Moscow).

[9]  Stefan Stamm,et al.  Processing of snoRNAs as a new source of regulatory non‐coding RNAs , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  Steve Hoffmann,et al.  Dicer-processed small RNAs: rules and exceptions. , 2013, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[11]  P. Tassone,et al.  The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma , 2012, Blood Cancer Journal.

[12]  Yuehua Wu,et al.  Long noncoding RNAs with snoRNA ends. , 2012, Molecular cell.

[13]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[14]  Michael E Hughes,et al.  Deep sequencing the circadian and diurnal transcriptome of Drosophila brain , 2012, Genome research.

[15]  F. Farzaneh,et al.  Are snoRNAs and snoRNA host genes new players in cancer? , 2012, Nature Reviews Cancer.

[16]  Jim Thurmond,et al.  FlyBase 101 – the basics of navigating FlyBase , 2011, Nucleic Acids Res..

[17]  Peter F. Stadler,et al.  PLEXY: efficient target prediction for box C/D snoRNAs , 2011, Bioinform..

[18]  Peter F. Stadler,et al.  RNAsnoop: efficient target prediction for H/ACA snoRNAs , 2010, Bioinform..

[19]  John S Mattick,et al.  Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data , 2010, BMC Genomics.

[20]  B. Montanini,et al.  Eukaryotic snoRNAs: a paradigm for gene expression flexibility. , 2009, Genomics.

[21]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[22]  F. Scialò,et al.  A novel Drosophila antisense scaRNA with a predicted guide function. , 2009, Gene.

[23]  Sebastian Will,et al.  RNAalifold: improved consensus structure prediction for RNA alignments , 2008, BMC Bioinformatics.

[24]  Peter F. Stadler,et al.  SnoReport: computational identification of snoRNAs with unknown targets , 2008, Bioinform..

[25]  E. Giordano,et al.  The coding/non-coding overlapping architecture of the gene encoding the Drosophila pseudouridine synthase , 2007, BMC Molecular Biology.

[26]  Liang-Hu Qu,et al.  Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. , 2005, RNA.

[27]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[28]  Edouard Bertrand,et al.  ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs , 2005, The Journal of cell biology.

[29]  Filomena Anna Digilio,et al.  A computational search for box C/D snoRNA genes in the Drosophila melanogaster genome , 2004, Bioinform..

[30]  Hui Zhou,et al.  Different expression strategy: multiple intronic gene clusters of box H/ACA snoRNA in Drosophila melanogaster. , 2004, Journal of molecular biology.

[31]  Christophe Dez,et al.  RNA structure and function in C/D and H/ACA s(no)RNPs. , 2004, Current opinion in structural biology.

[32]  E. Enerly,et al.  Evolutionary profiling of the U49 snoRNA gene. , 2003, Hereditas.

[33]  A. Hüttenhofer,et al.  The expanding snoRNA world. , 2002, Biochimie.

[34]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[35]  J. Steitz,et al.  Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. , 2001, European journal of cell biology.

[36]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[37]  J. Bachellerie,et al.  SnoRNA U21 is also intron‐encoded in Drosophila melanogaster but in a different host‐gene as compared to warm‐blooded vertebrates , 1996, FEBS letters.

[38]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .