High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.

We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×104 photons/(s·mW·MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

[1]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[2]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[3]  Alessandro Cerè,et al.  Atom-resonant heralded single photons by interaction-free measurement. , 2011, Physical review letters.

[4]  I. Walmsley Quantum optics: Science and technology in a new light , 2015, Science.

[5]  Masahide Sasaki,et al.  Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors , 2013, 1309.1221.

[6]  Pavel Sekatski,et al.  Witnessing trustworthy single-photon entanglement with local homodyne measurements , 2013 .

[7]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[8]  M. Chekhova,et al.  A versatile source of single photons for quantum information processing , 2012, Nature Communications.

[9]  C. Fabre,et al.  Quantum state engineering of light with continuous-wave optical parametric oscillators. , 2014, Journal of visualized experiments : JoVE.

[10]  V. B. Verma,et al.  A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector , 2012, CLEO: 2013.

[11]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[12]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[13]  Sae Woo Nam,et al.  Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm , 2011 .

[14]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[15]  Jörn Beyer,et al.  Highly efficient heralding of entangled single photons. , 2012, Optics express.

[16]  Christine Silberhorn,et al.  An efficient integrated two-color source for heralded single photons , 2012, 1211.3960.

[17]  Shuntaro Takeda,et al.  Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements , 2014, Nature Communications.

[18]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[19]  E. Pomarico,et al.  MHz rate and efficient synchronous heralding of single photons at telecom wavelengths. , 2012, Optics express.

[20]  C. Fabre,et al.  Effect of the heralding detector properties on the conditional generation of single-photon states , 2012, 1206.0824.

[21]  Christine Silberhorn,et al.  Direct generation of genuine single-longitudinal-mode narrowband photon pairs , 2015, 1504.01854.

[22]  Shigehito Miki,et al.  High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. , 2013, Optics express.

[23]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[24]  D. Rosenberg,et al.  High-speed and high-efficiency superconducting nanowire single photon detector array. , 2013, Optics express.

[25]  M. D. Shaw,et al.  High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K , 2014 .

[26]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[27]  E S Polzik,et al.  High purity bright single photon source. , 2007, Optics express.

[28]  Sae Woo Nam,et al.  Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. , 2011, Optics express.

[29]  F. Illuminati,et al.  Multiphoton quantum optics and quantum state engineering , 2006, quant-ph/0701050.

[30]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical Review Letters.

[31]  Timothy C. Ralph,et al.  Experimental investigation of continuous-variable quantum teleportation , 2002, quant-ph/0207179.

[32]  Matthias Scholz,et al.  Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. , 2009, Physical review letters.

[33]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[34]  Vitus Händchen,et al.  Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. , 2010, Physical review letters.

[35]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[36]  Hall,et al.  Generation of squeezed states by parametric down conversion. , 1986, Physical review letters.

[37]  Sébastien Tanzilli,et al.  Ultra‐fast heralded single photon source based on telecom technology , 2014, 1412.5427.

[38]  Julien Laurat,et al.  High-fidelity single-photon source based on a Type II optical parametric oscillator. , 2012, Optics letters.

[39]  Olivier Morin,et al.  Experimentally accessing the optimal temporal mode of traveling quantum light states. , 2013, Physical review letters.

[40]  Matteo Cristiani,et al.  Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. , 2013, Physical review letters.

[41]  R Filip,et al.  Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources. , 2015, Physical review letters.